Abstract:
A method of managing a terminal and controlling an interference in a small base station is provided. The small base station, including: an access preamble control unit to assign a unique preamble for each terminal registered in the small base station; a transmitting/receiving unit to receive a random access request message from each of the terminals through the unique preamble, to transmit a reply message to each of the terminals, and to receive information about each of the terminals and a Radio Resource Control (RRC) connection request Message from each of the terminals in response to the reply message; and a terminal verification unit to verify whether each of the terminals is a registered terminal using the information about each of the terminals.
Abstract:
A method of controlling femtocell interference considering a macrocell is provided. The method of controlling the interference includes a method of setting transmission power of the femtocell and methods of avoiding the interference of the femtocell. The methods of avoiding the interference include a PRB rotation method, a PRB transmission power restriction method, a hybrid method and a UB rotation method. The method of setting the transmission power and the methods of avoiding the interference may be implemented independently or implemented in combination with each other. Hence, according to the present invention, the femtocell itself can control the interference without affecting an interface of an existing macrocell base station and without signaling through the interface with the macrocell.
Abstract:
A technology for inter-cell interference control is provided. In one general aspect, the inter-cell interference may be controlled by resource allocation scheduling or power management. A cell may be divided into a plurality of regions. A constant available resource band and a selectively available band are allocated to each region. Each of the allocated resource bands is assigned with an interference characteristic. The resource allocation scheduling and the power management are performed according to the resources allocated to the respective regions and the interference characteristics assigned to the respective resources.
Abstract:
Disclosed is a mobility management method for use in a cellular mobile communication system. The mobility management method is configured to save radio resources and provide a stable service by detecting a cell in which a dwell time of user equipment (UE) is short as an island cell and performing a direct handover (HO) to an appropriate cell without handing over the UE to the island cell. There are provided three methods including a base station-based method, a UE measurement-based method, and a UE history-based method according to how to measure a dwell time in which the UE stays in a cell, a component in which obtained information is received within a network, and how to process an HO using the information.
Abstract:
Disclosed are a subscriber station authentication method, a protocol configuration method, and a device thereof in a wireless portable Internet system. In the subscriber station authentication method, an authentication mode between a subscriber station (10) and a base station (20) is negotiated, and the authentication mode is negotiated by the base station (20) according to the authentication mode negotiation. The authentication modes include an authentication mode based on the IEEE 802.16 privacy standard protocol and an authentication mode based on the standardized authentication protocol of the upper layer. Authentication is performed by the base station (10) in the case of the authentication mode based on the IEEE 802.16 privacy standard protocol, and the authentication is performed through message transmission using a diameter protocol between a base station (10) and an authentication server (40) in the case of the authentication mode based on the standardized authentication protocol of the upper layer.
Abstract:
An FFT/IFFT apparatus and method are provided. The FFT/IFFT apparatus includes a storage unit, a first FFT/IFFT unit, a second FFT/IFFT unit, and a third FFT/IFFT unit. The storage unit has as many addresses as the number of bits of input data. The first FFT/IFFT unit sequentially stores half of the input data in the storage unit, performs a first-point FFT/IFFT operation while sequentially receiving the other half of the input data, and stores the first-point FFT/IFFT operation result in the storage unit. The second FFT/IFFT unit performs a second-point FFT/IFFT operation on the first-point FFT/IFFTed data, and stores the second-point FFT/IFFT operation result in the storage unit. The third FFT/IFFT unit performs a third-point FFT/IFFT operation on the second-point FFT/IFFTed data, and stores the third-point FFT/IFFT operation result in the storage unit.
Abstract:
A mobile communication apparatus is provided. The mobile communication apparatus includes an information receiver to receive, from a serving base station, target base station information corresponding to at least one target base station located in a neighboring cell, and a controller to examine the target base station information and to perform a handover to the at least one target base station based on whether the at least one target base station supports a multi-band, and whether the at least one target base station provides a broadcast service.
Abstract:
A method of managing a terminal and controlling an interference in a small base station is provided. The small base station, including: an access preamble control unit to assign a unique preamble for each terminal registered in the small base station; a transmitting/receiving unit to receive a random access request message from each of the terminals through the unique preamble, to transmit a reply message to each of the terminals, and to receive information about each of the terminals and a Radio Resource Control (RRC) connection request Message from each of the terminals in response to the reply message; and a terminal verification unit to verify whether each of the terminals is a registered terminal using the information about each of the terminals.
Abstract:
In a bandwidth allocation method and/or apparatus for adaptively allocating radio channels in a mobile communication system, a token bucket is periodically filled with an amount of tokens that corresponds to a requested amount of bandwidth, and a bandwidth is allocated in accordance with the amount of tokens in the token bucket. In a further bandwidth allocation method and/or apparatus for adaptively allocating radio channels in a mobile communication system, a packet classification module classifies received packets on the basis of one of an Internet Protocol address, a port, and an upper layer protocol, a packet scheduler module receives the classified packet from a buffer module for transmission to a mobile station, and a bandwidth allocation module forms the buffer module for bandwidth allocation and processes traffic services by inter-working with the packet scheduler module when the bandwidth allocation is requested.
Abstract:
Provided is a bit calculation method, which accurately and easily calculates how many bits are transmitted by codeword per PDSCH in advance before a modulator performs modulation by TTI unit on a PCH or a DL-SCH transferred by a TrCH encoder, in a base-station modulator applied to an LTE-advanced system. Accordingly, the bit calculation method enables smooth data transmission, and easily checks data transmission error.