Abstract:
Data can be sent simultaneously on the data links between long-term evolution (LTE) and new radio (NR) for dual connectively. However a mobile device can indicate its capabilities to the network. The mobile device capabilities can comprise the number of total multiple-in multiple-out (MIMO) layers that the mobile device can support. Because different sectors or markets can have different spectrums that can make use of an increased or decreased number of layers, then assessing the MIMO layer capabilities of the mobile device can allow the network to dynamically adjust the LTE side and the NR side capabilities to optimize network utilization.
Abstract:
Various embodiments disclosed herein provide for a compressed user equipment (UE) capability message that can indicate to a mobile network the various capabilities of the UE. In particular, the carrier aggregation and dual connectivity capabilities are compressed as disclosed herein. In traditional implementations, each carrier aggregation and dual connectivity combination and implementation that is supported is explicitly indicated in the message. As disclosed herein, rather than listing explicit combinations, the UE capability message can be compressed by instead listing boundary values of several different parameters which can be used by the network to derive the carrier aggregation and dual connectivity combinations. The UE capability message can also list the boundary values for LTE (Long Term Evolution), NR (New Radio, or 5G), and Dual Connectivity separately within the message to reduce ambiguity.
Abstract:
Facilitating fast return to stand alone advanced networks (e.g., 5G, 6G, and beyond) after voice fall back is provided herein. Operations of a method can comprise receiving, from a first network device and by a second network device, a connection request that comprises an indication of a fall back procedure. The fall back procedure can be an “RRC release and redirect” or an “IRAT Handover.” The method also can comprise facilitating control of the voice communication for the mobile device and triggering a release of the control of the mobile device from the second network device based on a determination that the voice communication has completed. The fast return procedure can be either a “RRC release and redirect’ or an “IRAT handover.” Further, the method can comprise redirecting the mobile device to a third network device selected based on a capability of the mobile device.
Abstract:
Aspects of the subject disclosure may include, for example, transmitting a first message to a first network node, wherein the first message identifies a total count of resources available to a processing system across a plurality of carriers, transmitting a second message to a second network node that causes the second network node to obtain the total count of resources from the first network node, connecting the processing system to the first network node to receive first services in accordance with a first portion of the total count of resources, and connecting the processing system to the second network node to receive second services in accordance with a second portion of the total count of resources. Other embodiments are disclosed.
Abstract:
Information used for establishing an initial connection with a network device is optimizable. For example, a system can comprise transmitting a service request to a network node device to establish a connection, receiving a device capability request message comprising a group of configuration parameters that comprise a bandwidth class, a component carrier parameter and a band type parameter, and in response to the receiving the device capability request message, transmitting a device capability report generated based on the group of configuration parameters.
Abstract:
Load balancing is facilitated utilizing geographical location and mobility speed. An example method includes receiving, by a first cell device including a processor and associated with a first cell, from a device of devices, information indicative of whether the device has detected cell type information from a second cell device associated with a second cell, wherein at least a portion of the second cell is located within a first boundary of the first cell. The method also includes: determining, by the first cell device, a mobility characteristic of the device, wherein the devices comprise respective mobility characteristics; and selecting, by the first cell device, the device of the devices to associate with the second cell based on the mobility characteristic of the device.
Abstract:
Aspects of the subject disclosure may include, for example, determining dual connectivity values for neighbor cells of a serving cell of a wireless network. A dual connectivity capability is determined of a wireless device that engages in wireless communications coordinated by the serving cell. A target cell of the neighbor cells is determined based on a dual connectivity value. Initiation of a dual connectivity service is facilitated based on the wireless device via the target cell, wherein the target cell serves as a master cell of the dual connectivity service, and wherein the dual connectivity service includes exchanging user plane messages between the wireless device, the master cell and a secondary cell of the wireless network. Other embodiments are disclosed.
Abstract:
Traffic associated with user equipment that are coupled to a first radio access network is steered to a second radio access network based on an adaptable signal strength criterion. The signal strength criterion is related to real-time network load conditions of the first radio access network and can be broadcasted from a serving access point to the user equipment. Moreover, the signal strength criterion facilitates steering, to the second radio network, traffic associated with user equipment that are located closer to a cell edge of the first radio access network before steering traffic associated with user equipment are located further away from the cell edge. In addition, based on the network congestion within the first radio access network, the signal strength criterion is modified to adjust the number of user equipment that are steered to the second radio network.
Abstract:
Traffic associated with user equipment that are coupled to a first radio access network is steered to a second radio access network based on an adaptable signal strength criterion. The signal strength criterion is related to real-time network load conditions of the first radio access network and can be broadcasted from a serving access point to the user equipment. Moreover, the signal strength criterion facilitates steering, to the second radio network, traffic associated with user equipment that are located closer to a cell edge of the first radio access network before steering traffic associated with user equipment are located further away from the cell edge. In addition, based on the network congestion within the first radio access network, the signal strength criterion is modified to adjust the number of user equipment that are steered to the second radio network.
Abstract:
Traffic associated with user equipment that are coupled to a first radio access network is steered to a second radio access network based on an adaptable signal strength criterion. The signal strength criterion is related to real-time network load conditions of the first radio access network and can be broadcasted from a serving access point to the user equipment. Moreover, the signal strength criterion facilitates steering, to the second radio network, traffic associated with user equipment that are located closer to a cell edge of the first radio access network before steering traffic associated with user equipment are located further away from the cell edge. In addition, based on the network congestion within the first radio access network, the signal strength criterion is modified to adjust the number of user equipment that are steered to the second radio network.