Abstract:
The present disclosure provides an OLED touch panel, comprising: a substrate; a cathode and an anode, arranged on the substrate, wherein the cathode comprise a plurality of sub-cathodes; and at least one touch driving electrode, arranged on a same layer as the anode and separated from the anode, wherein the touch driving electrode is disposed to be intersected with the sub-cathodes; wherein the OLED touch panel is configured to, at a displaying phase, apply a driving signal for displaying on the cathode or the anode, so as to drive an OLED device, and applying, at a touching phase, a driving signal for touching on the touch driving electrode, so that at least a part of the sub-cathodes are operated as touch sensing electrodes, to output a touch sensing signal. The present disclosure also provides a display apparatus comprising the above OLED touch panel and a method for driving the same. The present disclosure uses the anode and cathode layer of the OLED device as an electrode layer of the touch sensor. Thus, by performing the touching and displaying of the touch display in a time sharing manner, the electrode layer can be omitted, and the thinner touch display can be manufactured.
Abstract:
A power supply assembly and an electronic device are provided. The power supply assembly includes a photoelectric converting element, a storage capacitor, an energy storage battery and an energy management module. The energy management module is configured to control the photoelectric converting element to charge the storage capacitor and the energy storage battery and control the storage capacitor to charge the energy storage battery. The power supply assembly can provide power stably in long term.
Abstract:
Embodiments of the present disclosure disclose a display panel, a method of manufacturing the display panel, and a display apparatus. The display panel includes: a first substrate and a second substrate opposite to each other; a liquid crystal layer between the first substrate and the second substrate; and a plurality of pixel electrodes on a side of the first substrate facing towards the liquid crystal layer. Liquid crystal molecules of the liquid crystal layer in a region corresponding to each of the plurality pixel electrodes are in a polymer network state, and the more a distance between the each of the plurality of pixel electrodes and a light source of an edge-lighting type light source module of the display panel is, the more an area occupied by a polymer network in the region corresponding to the each of the plurality of pixel electrodes is.
Abstract:
The present disclosure relates to a pixel arranging method. A repeating unit consists of a first structural unit and a second structural unit that are repeatedly arranged in the horizontal direction respectively, and are alternately arranged in the vertical direction; the first structural unit and the second structural unit respectively comprises seven sub-pixels, the seven sub pixels includes two sub-pixels of a first color, two sub-pixels of a second color, two sub-pixels of a third color and one sub-pixel of a fourth color; or two sub-pixels of the first color, one sub-pixel of the second color, two sub-pixels of the third color and two sub-pixels of the fourth color. The present disclosure also relates to a sub-pixel rendering method and an image display device. In case of limited manufacturing processes, the resolution can still be increased, while power consumption can be lowered.
Abstract:
Disclosed are an organic electroluminescent display and a method for preparing the same, and a display device. The organic electroluminescent display comprises: a base substrate; an organic electroluminescent pixel array, which is set on the base substrate; a packaging coverplate or a packaging film, which is covered outside the organic electroluminescent pixel array; and a phase difference film and a polarization functional film located inside the packaging coverplate or the packaging film and attached to the organic electroluminescent pixel array in turn. In the organic electroluminescent display according to the invention, the unnecessary films, such as a TAC films that need to be attached to the two sides of a polarization functional film in an existing circular sheet polarizer and a binding agent layer, etc., can be omitted, thereby the transmittance of a display can be improved, and the contrast of a display can be increased; moreover, the overall thickness of a display may be reduced, and the problem of being difficult to roll up may be avoided; and there exists no interference of oxygen and aqueous vapor, thus the durability of the circular sheet polarizer can be increased.
Abstract:
The present invention discloses an organic electroluminescent display device and a display apparatus comprising a substrate, an organic electroluminescent pixel array disposed on the substrate, and a package film coated on an outside of the organic electroluminescent pixel array. The organic electroluminescent display device further comprises an optical film laminate body at a light output side thereof; and the optical film laminate body is a preformed integral component including a plurality of functional film layers. Since the optical film laminate body including the plurality of functional film layers can be bonded on organic electroluminescent display device by a single film-bonding process, it simplifies the manufacturing process, decreases the cost, reduces the thickness, and improves the flexibility of the organic electroluminescent display device. In addition, the present invention also discloses a display apparatus comprising the organic electroluminescent display device.