System and method for simultaneously subsampling fluoroscopic images and enhancing guidewire visibility
    62.
    发明授权
    System and method for simultaneously subsampling fluoroscopic images and enhancing guidewire visibility 失效
    同时对透视图像进行二次采样并提高导丝可视性的系统和方法

    公开(公告)号:US07970191B2

    公开(公告)日:2011-06-28

    申请号:US11860591

    申请日:2007-09-25

    IPC分类号: G06K9/00 G06K9/40

    摘要: A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.

    摘要翻译: 用于在冠状动脉血管成形术期间对荧光透视图像进行下采样并增强导丝线可视性的方法包括提供第一数字化图像,用一个或多个不同角取向的可转向滤光片过滤图像,基于滤波器响应为每个像素分配权重W和取向O 每个像素,其中每个像素权重被分配给最大滤波器响应幅度的函数,并且如果幅度大于零,则从产生最大滤波器响应的角度计算像素取向,其中导丝像素具有比非最大滤波器响应幅度更大的权重, 引导线像素,以及对取向和权重进行下采样以计算第一图像的分辨率的一半的第二图像,其中下采样考虑分配给导丝像素的取向和较高权重。

    Method and System for Generating a Personalized Anatomical Heart Model
    66.
    发明申请
    Method and System for Generating a Personalized Anatomical Heart Model 有权
    生成个性化解剖心脏模型的方法和系统

    公开(公告)号:US20100070249A1

    公开(公告)日:2010-03-18

    申请号:US12562454

    申请日:2009-09-18

    IPC分类号: G06G7/60 G06F7/60 G06F17/10

    摘要: A method and system for generating a patient specific anatomical heart model is disclosed. Volumetric image data, such as computed tomography (CT) or echocardiography image data, of a patient's cardiac region is received. Individual models for multiple heart components, such as the left ventricle (LV) endocardium, LV epicardium, right ventricle (RV), left atrium (LA), right atrium (RA), mitral valve, aortic valve, aorta, and pulmonary trunk, are estimated in said volumetric cardiac image data. A patient specific anatomical heart model is generated by integrating the individual models for each of the heart components.

    摘要翻译: 公开了一种用于产生患者特异性解剖心脏模型的方法和系统。 接收患者心脏区域的体积图像数据,例如计算机断层扫描(CT)或超声心动图像数据。 用于多个心脏组件的单独模型,例如左心室(LV)心内膜,LV心外膜,右心室(RV),左心房(LA),右心房(RA),二尖瓣,主动脉瓣,主动脉和肺动脉干, 在所述体积心脏图像数据中估计。 患者特异性解剖心脏模型是通过对每个心脏部件的各个模型进行整合来产生的。

    System and method for learning relative distance in a shape space using image based features
    67.
    发明授权
    System and method for learning relative distance in a shape space using image based features 有权
    使用基于图像的特征来学习形状空间中的相对距离的系统和方法

    公开(公告)号:US07603000B2

    公开(公告)日:2009-10-13

    申请号:US11464851

    申请日:2006-08-16

    IPC分类号: G06K9/60

    摘要: A system and method for identifying a shape of an anatomical structure in an input image is disclosed. An input image is received and warped using a set of warping templates resulting in a set of warped images. An integral image is calculated for each warped image. Selected features are extracted based on the integral image. A boosted feature score is calculated for the combined selected features for each warped image. The warped images are ranked based on the boosted feature scores. A predetermined number of warped images are selected that have the largest feature scores. Each selected warped image is associated with its corresponding warping template. The corresponding warping templates are associated with stored shape models. The shape of the input image is identified based on the weighted average of the shapes models.

    摘要翻译: 公开了一种用于识别输入图像中的解剖结构的形状的系统和方法。 使用一组翘曲模板接收和扭曲输入图像,产生一组翘曲图像。 为每个弯曲图像计算整体图像。 基于积分图像提取所选特征。 对于每个弯曲图像的组合选定特征,计算提升的特征分数。 翘曲的图像根据提升的特征得分进行排名。 选择具有最大特征分数的预定数量的翘曲图像。 每个选择的变形图像与其相应的翘曲模板相关联。 相应的变形模板与存储的形状模型相关联。 基于形状模型的加权平均值来识别输入图像的形状。

    System and method for tracking anatomical structures in three dimensional images
    68.
    发明授权
    System and method for tracking anatomical structures in three dimensional images 有权
    用于跟踪三维图像中解剖结构的系统和方法

    公开(公告)号:US07555151B2

    公开(公告)日:2009-06-30

    申请号:US11218018

    申请日:2005-09-01

    IPC分类号: G06K9/00

    摘要: A system and method for defining and tracking a deformable shape of a candidate anatomical structure wall in a three dimensional (3D) image is disclosed. The shape of the candidate anatomical structure is represented by a plurality of labeled 3D landmark points. At least one 3D landmark point of the deformable shape in an image frame is defined. A 3D cuboid is defined around the detected 3D landmark point. For each landmark point associated with the anatomical structure, its location and location uncertainty matrix is estimated in subsequent frames relative to the reference anatomical structures. A shape model is generated to represent dynamics of the deformable shape in subsequent image frames. The shape model includes statistical information from a training data set of 3D images of representative anatomical structures. The shape model is aligned to the deformable shape of the candidate anatomical structure. The shape model is fused with the deformable shape. A current shape of the candidate anatomical structure is estimated.

    摘要翻译: 公开了一种在三维(3D)图像中定义和跟踪候选解剖结构壁的可变形形状的系统和方法。 候选解剖结构的形状由多个标记的3D地标点表示。 定义图像帧中的可变形形状的至少一个3D地标点。 3D立方体围绕检测到的3D地标点定义。 对于与解剖结构相关联的每个界标点,在相对于参考解剖结构的后续帧中估计其位置和位置不确定性矩阵。 生成形状模型以表示后续图像帧中的可变形形状的动态。 形状模型包括来自代表性解剖结构的3D图像的训练数据集的统计信息。 形状模型与候选解剖结构的可变形形状对齐。 形状模型与可变形的形状融合。 估计候选解剖结构的当前形状。

    Method and system for measuring left ventricle volume
    70.
    发明申请
    Method and system for measuring left ventricle volume 有权
    测量左心室体积的方法和系统

    公开(公告)号:US20090080745A1

    公开(公告)日:2009-03-26

    申请号:US12228911

    申请日:2008-08-18

    IPC分类号: G06K9/00

    摘要: A method and system for measuring the volume of the left ventricle (LV) in a 3D medical image, such as a CT, volume is disclosed. Heart chambers are segmented in the CT volume, including at least the LV endocardium and the LV epicardium. An optimal threshold value is automatically determined based on voxel intensities within the LV endocardium and voxel intensities between the LV endocardium and the LV epicardium. Voxels within the LV endocardium are labeled as blood pool voxels or papillary muscle voxels based on the optimal threshold value. The LV volume can be measured excluding the papillary muscles based on the number of blood pool voxels, and the LV volume can be measured including the papillary muscles based on the total number of voxels within the LV endocardium.

    摘要翻译: 公开了一种用于测量3D医学图像(例如CT)体积中的左心室(LV)的体积的方法和系统。 心室在CT体积中分段,至少包括LV心内膜和LV心外膜。 基于LV心内膜内的体素强度和LV心内膜与LV心外膜之间的体素强度自动确定最佳阈值。 基于最佳阈值将LV心内膜内的体素标记为血池体素或乳头肌肉体素。 基于血液池体素的数量可以除去乳头肌之外的LV体积,并且可以基于LV心内膜中的体素总数来测量LV体积,包括乳头肌。