摘要:
A method and system for providing medical decision support based on virtual organ models and learning based discriminative distance functions is disclosed. A patient-specific virtual organ model is generated from medical image data of a patient. One or more similar organ models to the patient-specific organ model are retrieved from a plurality of previously stored virtual organ models using a learned discriminative distance function. The patient-specific valve model can be classified into a first class or a second class based on the previously stored organ models determined to be similar to the patient-specific organ model.
摘要:
A method and system for providing medical decision support based on virtual organ models and learning based discriminative distance functions is disclosed. A patient-specific virtual organ model is generated from medical image data of a patient. One or more similar organ models to the patient-specific organ model are retrieved from a plurality of previously stored virtual organ models using a learned discriminative distance function. The patient-specific valve model can be classified into a first class or a second class based on the previously stored organ models determined to be similar to the patient-specific organ model.
摘要:
A method and system for modeling the pulmonary trunk in 4D image data, such as 4D CT data, and model-based percutaneous pulmonary valve implantation (PPVI) intervention is disclosed. A patient-specific dynamic pulmonary trunk data is generated from 4D image data of a patient. The patient is automatically classified as suitable for PPVI intervention or not suitable for PPVI intervention based on the generated patient-specific dynamic pulmonary trunk model.
摘要:
A method and system for modeling the pulmonary trunk in 4D image data, such as 4D CT data, and model-based percutaneous pulmonary valve implantation (PPVI) intervention is disclosed. A patient-specific dynamic pulmonary trunk data is generated from 4D image data of a patient. The patient is automatically classified as suitable for PPVI intervention or not suitable for PPVI intervention based on the generated patient-specific dynamic pulmonary trunk model.
摘要:
A method and apparatus for hierarchical parsing and semantic navigation of a full or partial body computed tomography CT scan is disclosed. In particular, organs are segmented and anatomic landmarks are detected in a full or partial body CT volume. One or more predetermined slices of the CT volume are detected. A plurality of anatomic landmarks and organ centers are then detected in the CT volume using a discriminative anatomical network, each detected in a portion of the CT volume constrained by at least one of the detected slices. A plurality of organs, such as heart, liver, kidneys, spleen, bladder, and prostate, are detected in a sense of a bounding box and segmented in the CT volume, detection of each organ bounding box constrained by the detected organ centers and anatomic landmarks. Organ segmentation is via a database-guided segmentation method.
摘要:
A computer-implemented system for searching a plurality of images for an image of interest including a database of semantic image representations corresponding to the plurality of images, wherein the semantic image representations link a semantic model of clinical properties, a syntactic model of high level image properties and an image vocabulary of low level image properties, a set of queries associated with the semantic image representations, and a semantic search engine, embodied as computer readable code executed by a processor, for receiving a search query, selecting at least one of the set of queries based on the search query, and searching the plurality of images for the image of interest by comparing the plurality of images against the semantic image representations associated with a selected query.
摘要:
A method and apparatus for hierarchical parsing and semantic navigation of a full or partial body computed tomography CT scan is disclosed. In particular, organs are segmented and anatomic landmarks are detected in a full or partial body CT volume. One or more predetermined slices of the CT volume are detected. A plurality of anatomic landmarks and organ centers are then detected in the CT volume using a discriminative anatomical network, each detected in a portion of the CT volume constrained by at least one of the detected slices. A plurality of organs, such as heart, liver, kidneys, spleen, bladder, and prostate, are detected in a sense of a bounding box and segmented in the CT volume, detection of each organ bounding box constrained by the detected organ centers and anatomic landmarks. Organ segmentation is via a database-guided segmentation method.
摘要:
A method and an apparatus retrieve additional information regarding a patient record. Applying the subject-matter of the present invention clinical experts, such as doctors, can be provided with domain specific background knowledge, and can, hence, be supported in making decisions regarding the treatment of patients. Said additional information can be structured and visualised, which makes the retrieved information understandable also for persons without advanced knowledge regarding data processing. The retrieval of additional information is accomplished by a comparison of data being stored in the patient record and data being stored in a predefined textual resource, such as a ontology, and an identification of further terms describing attributes of the patient record. This finds application in supporting the diagnosis of patients and healthcare related information retrieval tasks.
摘要:
A method and system for segmenting multiple brain structures in 3D magnetic resonance (MR) images is disclosed. After intensity standardization of a 3D MR image, a meta-structure including center positions of multiple brain structures is detected in the 3D MR image. The brain structures are then individually segmented using marginal space learning (MSL) constrained by the detected meta-structure.
摘要:
A method and system for fully automatic segmentation the prostate in multi-spectral 3D magnetic resonance (MR) image data having one or more scalar intensity values per voxel is disclosed. After intensity standardization of multi-spectral 3D MR image data, a prostate boundary is detected in the multi-spectral 3D MR image data using marginal space learning (MSL). The detected prostate boundary is refined using one or more trained boundary detectors. The detected prostate boundary can be split into patches corresponding to anatomical regions of the prostate and the detected prostate boundary can be refined using trained boundary detectors corresponding to the patches.