Abstract:
An improved cathode material for nonaqueous electrolyte lithium electrochemical cell is described. The preferred active material is ε-phase silver vanadium oxide (Ag2V4O11) coated with a protective layer of a metal oxide, preferably γ-phase SVO (Ag1.2V3O1.8). The SVO core provides high capacity and rate capability while the protective coating reduces reactivity of the active particles with electrolyte to improve the long-term stability of the cathode.
Abstract translation:描述了用于非水电解质锂电化学电池的改进的阴极材料。 优选的活性材料是涂覆有金属氧化物保护层的ε相银钒氧化物(Ag 2 N 2 O 4 O 11 N 11) 优选γ相SVO(Ag 1/2 3 3 N 1)。 SVO核提供高容量和速率能力,而保护涂层降低活性颗粒与电解质的反应性,从而提高阴极的长期稳定性。
Abstract:
A model for estimating the discharge profile of a Li/CFx cell is described. The model uses as inputs the load at which the cell is subjected to and the planar surface area to estimate current density. Then, current density is used to estimate cell voltage at each 2% depth-of-discharge.
Abstract:
A new sandwich positive electrode design for a secondary cell is provided comprising a “sacrificial” alkali metal along with a cathode active material. In the case of silver vanadium oxide, the sacrificial alkali metal is preferably lithium. Upon activating the cells, the lithium metal automatically intercalates into the silver vanadium oxide. That way, the sacrificial lithium is consumed and essentially lithiates the silver vanadium oxide. This means that cathode active materials, such as silver vanadium oxide, which before now were generally only used in primary cells, are now useful in secondary cells. In some use applications, silver vanadium oxide is more desirable than typically used lithiated cathode active materials.
Abstract:
The current invention relates to the preparation of an improved cathode active material for non-aqueous lithium electrochemical cell. In particular, the cathode active material comprises &egr;-phase silver vanadium oxide prepared by using a &ggr;-phase silver vanadium oxide starting material. The reaction of &ggr;-phase SVO with a silver salt produces the novel &egr;-phase SVO possessing a lower surface area than &egr;-phase SVO produced from vanadium oxide (V2O5) and a similar silver salt as starting materials. Consequently, the low surface area &egr;-phase SVO material provides an advantage in greater long term stability in pulse dischargeable cells.
Abstract:
The present invention relates to a new sandwich cathode design having two cathode active materials provided on opposite sides of a current collector. The respective active materials are similar in terms of, for example, their rate capability, their energy density, or some other parameter. However, one material may have an advantage over the other in one characteristic, but is disadvantageous in another. The cathode is built in a sandwich configuration having a first one of the active materials sandwiched between two current collectors. Then, the second active material is provided in contact with at least the other side of one of the current collectors, and preferably facing the anode. An exemplary cathode has the following configuration: MnO2/current collector/SVO/current collector/MnO2.
Abstract:
The present comprises an electrode having the configuration: first active material/current collector screen/second active material. When one of the active materials is in a powder form, it is possible for that material to move through openings in the current collector screen to “contaminate” the interface between the other active material and the current collector. The present invention consists of having the other electrode active materials in a form incapable of moving through the current collector to the other side thereof. Then, the assembly is pressed from the direction of the other electrode active material. This seals off the current collector as the pressing force moves the current collector against the powdered electrode active material.
Abstract:
An electrochemical cell comprising a medium rate electrode region intended to be discharged under a substantially constant drain and a high rate electrode region intended to be pulse discharged, is described. Both electrode regions share a common anode and are activated with the same electrolyte.
Abstract:
A rechargeable lithium-ion cell capable of being discharged to deliver high power pulses sufficient for implantable defibrillation applications and the like, is described. The cell is housed in a casing having an external volume of 5 cm3, or less. Both the negative and positive electrodes are less than about 0.15 mm in total thickness. Negative and positive electrodes of a reduced thickness provide the cell with high electrode surface area relative to its volume. As such, the present cell is capable of providing pulses in excess of 30C with minimal voltage drop.
Abstract:
A method for synthesizing a mixture of &egr;-SVO (Ag2V4O11) and &ggr;-SVO (Ag1.6V4O10.8) by a two-step raw materials mixing process, is described. &ggr;-SVO is the preferred SVO in terms of electrochemical performance, such as reduced Rdc growth and reduced or eliminated voltage delay. On the other hand, &egr;-SVO has slightly higher volumetric capacity than y-SVO. AgVO3 is an undesirable component in Li/SVO cell cathodes because it causes increased Rdc growth and larger voltage delay in comparison to the pure product materials. According to the present invention, a mixture of &egr;-SVO (0-100%)+&ggr;-SVO (100-0%) as a cathode active material in lithium cells is preferred.
Abstract:
A secondary electrochemical cell comprising a medium rate electrode region in a side-by-side electrode plate configuration intended to be discharged under a substantially constant drain and a high rate electrode region disposed in a jellyroll wound configuration intended to be pulse discharged, is described. Both electrode regions share a common anode and are activated with the same electrolyte.