Silver vanadium oxide cathode material for high discharge rate lithium cells
    4.
    发明授权
    Silver vanadium oxide cathode material for high discharge rate lithium cells 失效
    用于高放电率锂电池的银钒氧化物阴极材料

    公开(公告)号:US06623887B2

    公开(公告)日:2003-09-23

    申请号:US09793246

    申请日:2001-02-26

    IPC分类号: H01M434

    摘要: A method for synthesizing a mixture of &egr;-SVO (Ag2V4O11) and &ggr;-SVO (Ag1.6V4O10.8) by a two-step raw materials mixing process, is described. &ggr;-SVO is the preferred SVO in terms of electrochemical performance, such as reduced Rdc growth and reduced or eliminated voltage delay. On the other hand, &egr;-SVO has slightly higher volumetric capacity than y-SVO. AgVO3 is an undesirable component in Li/SVO cell cathodes because it causes increased Rdc growth and larger voltage delay in comparison to the pure product materials. According to the present invention, a mixture of &egr;-SVO (0-100%)+&ggr;-SVO (100-0%) as a cathode active material in lithium cells is preferred.

    摘要翻译: 描述了通过两步原料混合过程合成ε-SVO(Ag2V4O11)和γ-SVO(Ag1.6V4O10.8)的混合物的方法。 在电化学性能方面,γ-SVO是优选的SVO,例如降低的Rdc生长和减少或消除的电压延迟。 另一方面,epsil-SVO的体积容量比y-SVO略高。 AgVO3是Li / SVO电池阴极中不合需要的组分,因为与纯产品材料相比,它导致Rdc生长增加和电压延迟更大。 根据本发明,优选在锂电池中作为正极活性物质的ε-SVO(0-100%)+γ-SVO(100-0%)的混合物。

    Metal vanadium oxide particles
    5.
    发明授权
    Metal vanadium oxide particles 有权
    金属氧化钒颗粒

    公开(公告)号:US06391494B2

    公开(公告)日:2002-05-21

    申请号:US09311506

    申请日:1999-05-13

    IPC分类号: H01M434

    摘要: Laser pyrolysis can be used to produce directly metal vanadium oxide composite nanoparticles. To perform the pyrolysis a reactant stream is formed including a vanadium precursor and a second metal precursor. The pyrolysis is driven by energy absorbed from a light beam. Metal vanadium oxide nanoparticles can be incorporated into a cathode of a lithium based battery to obtain increased energy densities. Implantable defibrillators can be constructed with lithium based batteries having increased energy densities.

    摘要翻译: 激光热解可用于生产直接金属氧化钒复合纳米粒子。 为了进行热解,形成包括钒前体和第二金属前体的反应物流。 热分解是由光束吸收的能量驱动的。 可以将金属氧化钒纳米颗粒掺入锂基电池的阴极中以获得增加的能量密度。 可植入的除颤器可以用具有增加的能量密度的锂基电池构成。