Abstract:
A vehicle includes at least one imaging device configured to generate image data indicative of a vicinity of the vehicle. The vehicle also includes a user interface display configured to display image data from the at least one imaging device. A vehicle controller is programmed to monitor image data for the presence of moving external objects within the vicinity, and to activate the user interface display to display image data in response to detecting a moving external object in the vicinity while the vehicle is at a rest condition. The controller is also programmed to assign a threat assessment value based on conditions in the vicinity of the vehicle, and upload image data to an off-board server in response to the threat assessment value being greater than a first threshold.
Abstract:
A smart sensor-cover apparatus for covering a sensor, such as a vehicle sensor, includes controllable layers, responsive to inputs, such as a wavelength-filtering controllable layer to selectively filter out select wavelengths of light; a polarizing layer controllable layer to selectively polarize or allow through light; a concealing controllable layer to change between a visible state and a concealed state; and an outermost, cleaning, layer configured to melt incident ice. The outermost layer in various embodiments has an outer surface positioned generally flush with an outer vehicle surface for operation of the apparatus, to promote the concealing effect when the concealing layer is not activate. The outermost layer may be configured to self-mend when scratched, and in some cases is hydrophobic, hydrophilic, or super hydrophilic outer surface. An insulating component, such as a glass or polycarbonate layer, is positioned between each adjacent controllable layer.
Abstract:
A system and method is taught for collaborative vehicle to all (V2X) communications to improve autonomous driving vehicle performance in a heterogeneous capability environment by sharing capabilities among different vehicles. In particular, the system and method are operative to facilitate path planning contention resolution among a plurality of road uses within a road segment by facilitating the election and transition of a segment leader to arbitrate conflicts.
Abstract:
A method and apparatus for adjusting front view camera images are provided. The method includes determining whether a front mounted license plate is present; in response to determining that the front mounted license plate is present, adjusting an image of a front view camera to remove a part of the image including an area where the front mounted license plate is present and displaying the adjusted image; and in response to determining that the front mounted license plate is absent, displaying the image of the front view camera including a part of the area where the front mounted license plate would be mounted.
Abstract:
A system and method for providing target selection and threat assessment for vehicle collision avoidance purposes that employ probability analysis of radar scan returns. The system determines a travel path of a host vehicle and provides a radar signal transmitted from a sensor on the host vehicle. The system receives multiple scan return points from detected objects, processes the scan return points to generate a distribution signal defining a contour of each detected object, and processes the scan return points to provide a position, a translation velocity and an angular velocity of each detected object. The system selects the objects that may enter the travel path of the host vehicle, and makes a threat assessment of those objects by comparing a number of scan return points that indicate that the object may enter the travel path to the number of the scan points that are received for that object.
Abstract:
A system and method for creating an enhanced virtual top-down view of an area in front of a vehicle, using images from left-front and right-front cameras. The enhanced virtual top-down view not only provides the driver with a top-down view perspective which is not directly available from raw camera images, but also removes the distortion and exaggerated perspective effects which are inherent in wide-angle lens images. The enhanced virtual top-down view also includes corrections for three types of problems which are typically present in de-warped images—including artificial protrusion of vehicle body parts into the image, low resolution and noise around the edges of the image, and a “double vision” effect for objects above ground level.
Abstract:
A vehicle guidance system assists a driver in maneuvering a vehicle with respect to an object in a scene. The system includes a steering angle sensor, a camera device, a video processing module (VPM), and a human-machine interface (HMI). The sensor is configured to monitor the angular position of a vehicle wheel. The device is configured to capture an original image of a scene having the object. The VPM is configured to receive and process the original image from the device, detect the object in the original image, receive and process the angular position from the sensor, generate a vehicle trajectory based on the angular position, and orientate the trajectory with regard to the object. The HMI is configured to display a processed image associated with the original image and a trajectory overlay associated with the trajectory from the VPM. Together, the object is displayed in relation to the overlay.
Abstract:
A method for determining a wet road surface condition for a vehicle driving on a road. A first image exterior of the vehicle is captured by an image capture device. A second image exterior of the vehicle is captured by the image capture device. A section of the road is identified in the first and second captured images. A texture of the road in the first and second images captured by a processor are compared. A determination is made whether the texture of the road in the first image is different from the texture of the road in the second image. A wet driving surface indicating signal is generated in response to the determination that the texture of the road in the first image is different than the texture of the road in the second image.
Abstract:
A method of calibrating multiple vehicle-based image capture devices of a vehicle. An image is captured by at least one image capture device. A reference object is identified in the captured image. The reference object has known world coordinates. Known features of the vehicle are extracted in the captured image. A relative location and orientation of the vehicle in world coordinates is determined relative to the reference object. Each of the multiple image capture devices is calibrated utilizing intrinsic and extrinsic parameters of the at least one image capture device as a function of the relative location and orientation of the vehicle in world coordinates.
Abstract:
A system and method for providing target selection and threat assessment for vehicle collision avoidance purposes that employ probability analysis of radar scan returns. The system determines a travel path of a host vehicle and provides a radar signal transmitted from a sensor on the host vehicle. The system receives multiple scan return points from detected objects, processes the scan return points to generate a distribution signal defining a contour of each detected object, and processes the scan return points to provide a position, a translation velocity and an angular velocity of each detected object. The system selects the objects that may enter the travel path of the host vehicle, and makes a threat assessment of those objects by comparing a number of scan return points that indicate that the object may enter the travel path to the number of the scan points that are received for that object.