摘要:
Signal processing delays are selected from a candidate set in a wireless receiver based on both present and past channel behavior. According to one embodiment, a subset of signal processing delays are selected for received signal processing by accumulating a history of periodic delay selection computations for a candidate set of signal processing delays during a time interval. The delay selection calculations are based on cross-correlations between different ones of the signal processing delays. At the end of the time interval, a subset of the signal processing delays are selected from the candidate set of delays for received signal processing based on the history of delay selection computations.
摘要:
A mobile communications system receiver has improved synchronization and channel estimation for receiving a transmitted signal passing through a radio channel. A processor receives and samples the transmitted signal for a plurality of timing hypotheses. A channel estimator hypothesizes unknown symbols at a pilot cluster of the sampled signal and estimates the radio channel of the pilot cluster for each hypothesized symbol sequence. The estimator determines an error corresponding to each hypothesized symbol sequence using the sampled signal, the estimated radio channel and the hypothesized symbols and determines actual timing estimates and actual radio channel estimates by selecting the radio channel estimates associated with the hypothesized symbols and the timing and hypothesis that minimizes the error.
摘要:
According to the present invention, the effects of the transmission medium on transmitted information symbols are estimated separately from other effects, e.g., those associated with receive and transmit filters, using knowledge of the pulse shaping. The medium response estimate is then used to detect information symbols. Previously, receivers had used estimates of the composite channel to detect symbols. This, however, assumed uncorrelated noise, which is not always the case.
摘要:
Techniques for adapting detection schemes used in receivers for receiving radio signals are described. The received signal is processed to determine, for example, an amount of time dispersion present in the radio channel. Based on this determination an appropriate detection scheme is selected for detecting the transmitted symbols. Various techniques for determining the dispersive or non-dispersive nature of the channel are described.
摘要:
Information symbols spread using orthogonal or bi-orthogonal codewords are assigned a unique scramble mask that is taken from a set of scramble masks having selected correlation properties. The set of scramble masks is selected such that the correlation between the modulo-2 sum of two scramble masks with any codeword is a constant magnitude, independent of the codeword and the individual masks being compared. In one embodiment, when any two masks are summed using modulo-2 arithmetic, the Walsh transformation of that sum results in a maximally flat Walsh spectrum. For cellular radio telephone systems using subtractive CDMA demodulation techniques, a two-tier ciphering system ensures security at the cellular system level by using a pseudorandomly generated code key to select one of the scramble masks common to all of the mobile stations in a particular cell. Also, privacy at the individual mobile subscriber level is ensured by using a pseudorandomly generated ciphering key to encipher individual information signals before the scrambling operation.
摘要:
The present invention relates to a receiver comprising a fast power control unit, said fast power control unit being arranged to continuously control a quality measure of a radio channel. The receiver is characterized in that the quality measure is a modified Signal to Interference plus noise ratio (SIR) in which the influence from self interference has been removed. The invention further relates to a method for continuously controlling a quality measure of a radio channel, wherein a modified Signal to Interference plus noise ratio (SIR) is continuously determined in which the influence from self interference has been removed.
摘要:
Teachings presented herein offer improved symbol block detection by including a decoder unit in a demodulation system. Utilizing a decoder unit in a demodulation system can significantly enhance symbol block detection because the decoder can produce bit likelihood values (soft bit values), and these bit likelihood values can be used to construct a set of candidate symbol values. Advantageously, this set of candidate symbol values is more likely to contain the actually transmitted symbol(s) than if the decoder unit was not used in the demodulation system.
摘要:
Where two or more multi-valued digital data symbols are modulated so that they overlap after passing through a channel, forming a combined signal, a receiver receives the combined signal and forms detection statistics to attempt to recover the symbols. Where forming detection statistics does not completely separate the symbols, each statistic comprises a different mix of the symbols. A receiver determines the symbols which, when mixed in the same way, reproduce or explain the statistics most closely. For example, the receiver hypothesizes all but one of the symbols and subtracts the effect of the hypothesized symbols from the mixed statistics. The remainders are combined and quantized to the nearest value of the remaining symbol. For each hypothesis, the remaining symbol is determined. A metric is then computed for each symbol hypothesis including the so-determined remaining symbol, and the symbol set producing the best metric is chosen as the decoded symbols.
摘要:
According to a method and apparatus taught herein, a decoding circuit and method decode linear block codes based on determining joint probabilities for one or more related subsets of bits in received data blocks. The use of joint probabilities enables faster and more reliable determination of received bits, meaning that, for example, joint probability decoding requires fewer decoding iterations than a comparable decoding process based on single-bit probabilities. As a non-limiting example, the decoding circuit and method taught herein provide advantageous operation with Low Density Parity Check (LDPC) codes, and can be incorporated in a variety of communication systems and devices, such as those associated with wireless communication networks.
摘要:
Teachings presented herein offer improved symbol block detection by including a decoder unit in a demodulation system. Utilizing a decoder unit in a demodulation system can significantly enhance symbol block detection because the decoder can produce bit likelihood values (soft bit values), and these bit likelihood values can be used to construct a set of candidate symbol values. Advantageously, this set of candidate symbol values is more likely to contain the actually transmitted symbol(s) than if the decoder unit was not used in the demodulation system.