摘要:
A circuit for programming a resistive switching device includes a resistive switching device characterized by a programmable resistance, the resistive switching device comprising a first terminal, a second terminal, and a resistive switching element, a first circuit configured to supply a programming voltage to the resistive switching device and to supply a predetermined current to flow in the resistive switching device, and a second circuit coupled to the first circuit and to the resistive switching device, wherein the second circuit is configured to terminate the supply of the programming voltage to the resistive switching device when the predetermined current flows in the resistive switching device.
摘要:
Providing for a field programmable gate array (FPGA) utilizing resistive random access memory (RRAM) technology is described herein. By way of example, the FPGA can comprise a switching block interconnect having parallel signal input lines crossed by perpendicular signal output lines. RRAM memory cells can be formed at respective intersections of the signal input lines and signal output lines. The RRAM memory cell can include a voltage divider comprising multiple programmable resistive elements arranged electrically in series across a VCC and VSS of the FPGA. A common node of the voltage divider drives a gate of a pass gate transistor configured to activate or deactivate the intersection. The disclosed RRAM memory can provide high transistor density, high logic utilization, fast programming speed, radiation immunity, fast power up and significant benefits for FPGA technology.
摘要:
A method to eliminate program deceleration and to enhance the resistance to program disturbance of a non-volatile floating gate memory cell is disclosed. This method eliminates or minimizes the impact of the hole displacement current. This can be done, for example, by increasing the rise time of the high programming voltage applied to the high voltage terminal. Alternatively, the transistor of the non-volatile floating gate memory cell can be turned off until the voltage applied to the high voltage terminal has reached the programming voltage. This can be done, for example by delaying the voltage applied to either the low voltage terminal or to the control gate to turn on the transistor until the voltage at the high voltage terminal has past the ramp up voltage and has reached a level programming voltage.