Abstract:
Apparatuses, methods and computer readable media for multi-user request-to-send and clear-to-send are disclosed. An apparatus of a high-efficiency wireless local area network (HEW) master station comprising circuitry is disclosed. The circuitry may be configured to: select a first group of stations to transmit a multi-user request-to-send (MU-RTS) transmission to and generate a MU-RTS packet for the first group of stations. The circuitry may be configured to transmit the MU-RTS packet to the first group of stations. The MU-RTS may include a resource map that indicates a subchannel for each of the first group of stations to receive data on and/or a power control indication for at least one of the stations of the one or more stations. The MU-RTS may indicate that some of the first group of stations should transmit a multi-user clear-to-send (MU-CTS) and others of the first group of stations should not transmit a MU-CTS.
Abstract:
Methods, devices and a computer-readable medium are disclosed for an uplink transmission opportunity in a high-efficiency wireless local-area network (HEW) are disclosed. A HEW station is disclosed that may include circuitry configured to receive a trigger frame with a first duration from a HEW master station, determine a second duration based on the first duration, generate a packet with the second duration, and transmit the packet with the second duration in an uplink transmission opportunity to the master station in accordance with at least one from the following group: orthogonal frequency division multiple-access and multiple-user multiple-input multiple-output. The trigger frame may include a resource map and the HEW station may transmit the packet on a channel indicated in the resource map. The second duration may be indicated in a legacy portion of the packet. The second duration may extend to one short interframe space before an acknowledgement of the packet.
Abstract:
Methods, apparatuses, and computer readable media are disclosed to signal a packet configuration. A HEW device to signal a packet configuration may include circuitry. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields and include in the L-SIG the packet configuration of the HE packet to signal to a second HEW device. The circuitry may configure a length field of the L-SIG to be a one or two modulo of three (MOD 3) to indicate the HE packet. The length field of the L-SIG may indicate that the HE packet includes a portion that has a one-quarter size subcarrier. The circuitry may set the length field of the L-SIG to be 1 mod 3 to indicate a first type of HE packet and to be 2 mod 3 to indicate a second type of HE packet.
Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Methods, apparatuses, and computer readable media are disclosed to signal a packet configuration. A HEW device to signal a packet configuration may include circuitry. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields and include in the L-SIG the packet configuration of the HE packet to signal to a second HEW device. The circuitry may configure a length field of the L-SIG to be a one or two modulo of three (MOD 3) to indicate the HE packet. The length field of the L-SIG may indicate that the HE packet includes a portion that has a one-quarter size subcarrier. The circuitry may set the length field of the L-SIG to be 1 mod 3 to indicate a first type of HE packet and to be 2 mod 3 to indicate a second type of HE packet.
Abstract:
Apparatuses, methods, and computer readable media are disclosed. A STA to detect a HE SIG may be configured to detect the HE SIG based on at least one from the following group: a flipped reserved bit, a scrambled portion of the HE SIG, and a rotation of a signal constellation of the HE SIG different than legacy rotations of: a rotation of a first signal constellation and no rotation of a second signal constellation, and no rotation of the first signal constellation and a rotation of the second signal constellation. The STA may determine that a reserved bit is the flipped reserved bit based on a bit being reversed from a legacy standard. The STA may unscramble a received signal field, determine whether a CRC indicates the HE-SIG contains errors, and if the CRC indicates there are no errors, then determine that the signal field is the HE SIG.
Abstract:
Methods, apparatuses, and computer readable media include an apparatus of an access point (AP) or station (STA) comprising processing circuitry configured to decode a legacy preamble of a physical layer (PHY) protocol data unit (PPDU), determine whether the legacy preamble comprises an indication that the PPDU is an extremely-high throughput (EHT) PPDU, and in response to the determination indicating the PPDU is the EHT PPDU, decode the EHT PPDU. Some embodiments determine a spatial stream resource allocation based on a row of a spatial configuration table, a row of a frequency resource unit table, a number of stations, and location of the station relative to the number of stations in user fields of an EHT-signal (SIG) field. To accommodate 16 spatial streams, some embodiments extend the length of the packet extension field, extend signaling of a number of spatial streams, and/or extend a number of EHT-SIG symbols.
Abstract:
Methods, computer readable media, and wireless apparatuses are disclosed for a TXOP duration field. An apparatus is disclosed comprising processing circuitry configured to: encode a first high efficiency (HE) physical-layer convergence procedure (PLCP) protocol data unit (PPDU) comprising a transmission opportunity (TXOP) duration field in a first physical-layer portion of the first HE PPDU. The processing circuitry may be further configured to set the TXOP duration field value to indicate a largest duration value representable by the TXOP duration field that is equal to or less than a duration value indicated by the first MAC duration field, if the first HE PPDU is to include a first media access control (MAC) duration field in a first MAC-layer portion of the first HE PPUU.
Abstract:
Methods, computer readable media, and wireless apparatuses are disclosed for a TXOP duration field disable setting in a HE preamble, such as HE-SIG-A. An apparatus of a wireless device can include processing circuitry configured to decode a HE PPDU received from a second wireless device, the HE PPDU including a first TXOP duration field in a PHY portion of the HE PPDU. The processing circuitry can detect whether the TXOP duration field includes a disable flag based on bit values of the TXOP duration field. The disable flag can indicate absence of duration information in the TXOP duration field. Upon detecting the disable flag, a response HE PPDU can be encoded for transmission to the second wireless device. The response HE PPDU can include a second TXOP duration field with a disable flag within a PHY portion of the response HE PPDU.