摘要:
One embodiment provides a method of making an oxidation and corrosion resistant nuclear fuel. The method includes refining, by high energy ball milling (HEBM), a nuclear fuel powder comprising at least one nuclear fuel component and sintering the refined powder to form a nuclear fuel pellet. The method may further include adding a powdered dopant to the nuclear fuel powder. The refined powder includes the nuclear fuel powder and the powdered dopant.
摘要:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The system can generate extrapolated UV intensity data based on measured UV intensity data to correct unreliable UV measurement due to inconsistent irradiation of UV light. The UV dosimetry system integrates the extrapolated UV intensity data over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
摘要:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The system can also provide feedback to the user of the device based on a composite metric assessing the degree of balance between the risk of UV exposure and the benefit of UV exposure. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
摘要:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The system can generate extrapolated UV intensity data based on measured UV intensity data to correct unreliable UV measurement due to inconsistent irradiation of UV light. The UV dosimetry system integrates the extrapolated UV intensity data over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
摘要:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The system can also estimate UV intensity for a time in the future at a geographic location based on the forecast UV index data, and predict UV dose and vitamin D generation for the user corresponding to user defined scenarios. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
摘要:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and the effective sun protection factor of the applied sunscreen. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
摘要:
Exemplary methods and apparatuses are disclosed that provide for determination of an atrio-ventricular delay on a beat-to-beat basis by determining a P-wave duration from electric signals corresponding to electric potentials in a heart, and determining the atrio-ventricular delay on a beat-to-beat basis such that the atrio-ventricular delay for an individual heart cycle depends on the P-wave duration of a same or an immediately preceding heart cycle.
摘要:
Heart stimulator that provides for timing a premature stimulation pulse for anti-tachycardia pacing outside the vulnerable phase of a ventricle, to terminate stable ventricular tachycardia while minimizing the risk of accelerating stable ventricular tachycardia into unstable ventricular tachycardia or ventricular fibrillation. RT interval is determined instead of QT interval. Conventional QT interval is defined to end at T wave offset, which is difficult to measure because inherent imprecision in identifying the end of T wave from surface ECG. For safe ATP, such problems may be avoided. Because the VP usually refers to the portion of the T wave near the peak and early downslope (FIG. 3), in order to avoid the VP, only need to determine the peak of T wave, then set an blanking window or safety margin (e.g., 20 ms before to 20 ms after the peak of T wave) during which ATP pulses should not be delivered.
摘要:
A semi-automatic atrial defibrillation system monitors activity of a heart, detects atrial fibrillation (AF), and cardioverts detected AF. The system includes an implantable atrial defibrillator capable of communicating with an external portable device that can further communicate with a remote service center. The implantable atrial defibrillator is capable of detecting AF, automatically sending warning signal and diagnostic data to an external portable device after detection of AF, receiving commands from the external portable device, and cardioverting AF. The external portable device is capable of sending commands to the implantable atrial defibrillator, receiving data from the implantable atrial defibrillator, providing patient discernable warning signal and brief diagnostic information after detection of AF, and transmitting diagnostic information to the remote service center. The external portable device is operable by the patient, who may self-control the delivery of atrial cardioversion therapy after receiving the AF warning message, or may contact the remote service center for physician's advice before taking any action.