摘要:
Destruction for reperfusion in medical diagnostic ultrasound is synchronized to motion. Perfusion data for a volume is acquired sequentially for different segments of the volume. For a given segment, such as a planar region, motion tracking within the segment is performed. If sufficient registration or correlation exists at the completion of a sequence of scans for the current segment, then a lesser amount of movement is occurring. At this point, the transmission of contrast agent destructive acoustic energy is performed in the next segment. Tracking is repeated for the next segment to synchronize the switch to yet another segment. Other regions for tracking can be used. By controlling transmission of destruction pulses, more reliable perfusion quantities in a volume may be determined.
摘要:
Motion artifacts are suppressed for three-dimensional parametric ultrasound imaging. Motion tracking is performed so that the parameter values derived over time are based on return from the same locations. Distortion due to the scan pattern is accounted for in the results of the motion tracking, such as by re-sampling the results to deal with discontinuity in time between data from adjacent sub-volumes and/or by aligning the scan pattern based on a direction of motion.
摘要:
Highly specific measurements of flow in vessels, such as the coronary artery, can be obtained by processing cubic fundamental information. By showing flow in vessels with a high degree of contrast-to-tissue specificity, ultrasound based 3D contrast agent based coronary artery angiograms may be possible. Measurement and display of the velocity of agent from the cubic fundamental signal is provided simultaneously with display of cubic fundamental energy, such as providing a display map indexed by both energy and velocity. High pulse repetition frequency (PRF) for cubic fundamental detection in conjunction with long velocity measurement intervals may increase low velocity sensitivity and measurement precision. Pulsed wave (PW) Doppler may be improved by using a cubic fundamental sensitive pulse sequence. Using cubic fundamental sensitive techniques with other motion estimation techniques, such as two-dimensional velocity estimation or speckle tracking, may operate better than using other contrast agent detection techniques because of substantially reduced clutter.
摘要:
The effectiveness of contrast agent destruction is determined. Locations of ineffectively destroyed contrast agents are identified. The response from undestroyed contrast agents may be distinguished from response from tissue due to saturation or from rapid perfusion. The locations may be highlighted on resulting images, indicating to the user locations not associated with perfusion. The user may make a diagnosis on perfusion rather than a lack of destruction of contrast agents.
摘要:
Highly specific measurements of flow in vessels, such as the coronary artery, can be obtained by processing cubic fundamental information. By showing flow in vessels with a high degree of contrast-to-tissue specificity, ultrasound based 3D contrast agent based coronary artery angiograms may be possible. Measurement and display of the velocity of agent from the cubic fundamental signal is provided simultaneously with display of cubic fundamental energy, such as providing a display map indexed by both energy and velocity. High pulse repetition frequency (PRF) for cubic fundamental detection in conjunction with long velocity measurement intervals may increase low velocity sensitivity and measurement precision. Pulsed wave (PW) Doppler may be improved by using a cubic fundamental sensitive pulse sequence. Using cubic fundamental sensitive techniques with other motion estimation techniques, such as two-dimensional velocity estimation or speckle tracking, may operate better than using other contrast agent detection techniques because of substantially reduced clutter.
摘要:
Automated determination and setting of an ultrasound system transmit power level is provided for contrast agent imaging. Low mechanical index imaging of contrast agents allows substantially continuous imaging of contrast agents without destruction. By comparing data associated with different transmit power levels, different delays between acquisition or different acquisition sequences, a contrast agent imaging transmit power generally minimizing destruction of contrast agents and maximizing signal-to-noise ratio is automatically determined.
摘要:
Methods and systems are provided for identifying clinical markers in spatial compounded imaging. For example, an image responsive to less spatial compounding more likely preserves clinical markers than a steered compound image. By displaying both images, clinical markers are identified by the user from one image and other diagnostic information is obtained from the steered compound image. As another example, clinical marker information is identified and added back into or highlighted on a spatial compound image for identification by the user.
摘要:
An apparatus and method for processing ultrasound data is provided. The apparatus includes an interface operatively connected to a memory, a programmable single instruction multiple data processor (or two symmetric processors), a source of acoustic data (such as a data bus) and a system bus. The memory stores data from the processor, ultrasound data from the source, and data from the system bus. The processor has direct access to the memory. Alternatively, the system bus has direct access to the memory. The interface device translates logically addressed ultrasound data to physically addressed ultrasound data for storage in a memory. The translation is the same for data from both the processor and the source for at least a portion of a range of addresses. The memory stores both ultrasound data and various of: beamformer control data, instruction data for the processor, display text plane information, control plane data, and a table of memory addresses. One peripheral connects to the ultrasound apparatus. An interface adapter, powered from the ultrasound apparatus, translates information transferred between the peripheral and the ultrasound apparatus. The adapter connects non-standard peripherals to various standard interfaces on the ultrasound apparatus.
摘要:
Line synthesis avoids artifacts from differences in collateral destruction of contrast agent. Data representing a plurality of scan lines is received in response to each transmit event. Transmission and reception along the same scan lines are repeated a plurality of times for loss correlation imaging. Coherent data or data prior to detection along two or more scan lines is combined, removing differences. The combined data represents a synthesized line of data for detection. Line data representing contrast agents or not representing contrast agents may be synthesized from detected data. Detected data or data in the magnitude and phase domain representing two or more scan lines is combined. By altering the data provided to a flow processor or Doppler data detector, the relative phase of the data representing the two scan lines is determined. A magnitude for a synthetic line is calculated as a function of the magnitude of data representing two separate scan lines and the relative phase.
摘要:
A method and apparatus for quantifying and displaying ultrasound signals in an ultrasonic system are provided. A first signal value for each of at least one spatial location in a region of interest is acquired at a first time, and the signal values are summed to obtain a first surface integral value. A second signal value for each of said at least one spatial location in said region of interest is acquired at a second time, and the second signal values are summed to obtain a second surface integral value. The first surface integral value is summed with the second surface integral value to obtain a time based integral. The time based integral is displayed. Other quantities based on any of various ultrasound parameters, such as Doppler energy, Doppler velocity and B-mode intensity, are calculated and displayed as quantities or as waveforms as a function of time. Furthermore, various comparisons of quantities and waveforms are provided. Image plane data or other ultrasound data are used in the calculations. Finally, a histogram data structure is provided to aid calculation of the various quantities.