Method and System for Anatomic Landmark Detection Using Constrained Marginal Space Learning and Geometric Inference
    61.
    发明申请
    Method and System for Anatomic Landmark Detection Using Constrained Marginal Space Learning and Geometric Inference 有权
    使用约束边际空间学习和几何推理的解剖地标检测方法和系统

    公开(公告)号:US20100119137A1

    公开(公告)日:2010-05-13

    申请号:US12604495

    申请日:2009-10-23

    IPC分类号: G06K9/00

    摘要: A method and apparatus for detecting multiple anatomical landmarks in a 3D volume. A first anatomical landmark is detected in a 3D volume using marginal space learning (MSL). Locations of remaining anatomical landmarks are estimated in the 3D volume based on the detected first anatomical landmark using a learned geometric model relating the anatomical landmarks. Each of the remaining anatomical landmarks is then detected using MSL in a portion of the 3D volume constrained based on the estimated location of each remaining landmark. This method can be used to detect the anatomical landmarks of the crista galli (CG), tip of the occipital bone (OB), anterior of the corpus callosum (ACC), and posterior of the corpus callosum (PCC) in a brain magnetic resonance imaging (MRI) volume.

    摘要翻译: 一种用于检测3D体积中的多个解剖标志的方法和装置。 使用边缘空间学习(MSL)在3D体积中检测到第一个解剖学标记。 基于检测到的第一解剖学标记,使用与解剖标志相关联的学习的几何模型,在3D体积中估计剩余解剖学标记的位置。 然后使用MSL在基于每个剩余地标的估计位置约束的3D体积的一部分中使用MSL来检测每个剩余的解剖标志。 该方法可用于检测颅骨(CG),枕骨顶端(OB),胼the体前(ACC)和胼the体后脑(PCC)脑解剖标志物的脑磁共振 成像(MRI)体积。

    Method and System for Detecting 3D Anatomical Structures Using Constrained Marginal Space Learning
    62.
    发明申请
    Method and System for Detecting 3D Anatomical Structures Using Constrained Marginal Space Learning 有权
    使用约束边际空间学习检测3D解剖结构的方法和系统

    公开(公告)号:US20090304251A1

    公开(公告)日:2009-12-10

    申请号:US12471761

    申请日:2009-05-26

    IPC分类号: G06K9/00

    摘要: A method and apparatus for detecting 3D anatomical objects in medical images using constrained marginal space learning (MSL) is disclosed. A constrained search range is determined for an input medical image volume based on training data. A first trained classifier is used to detect position candidates in the constrained search range. Position-orientation hypotheses are generated from the position candidates using orientation examples in the training data. A second trained classifier is used to detect position-orientation candidates from the position-orientation hypotheses. Similarity transformation hypotheses are generated from the position-orientation candidates based on scale examples in the training data. A third trained classifier is used to detect similarity transformation candidates from the similarity transformation hypotheses, and the similarity transformation candidates define the position, translation, and scale of the 3D anatomic object in the medical image volume.

    摘要翻译: 公开了一种使用受限边际空间学习(MSL)检测医学图像中3D解剖学对象的方法和装置。 基于训练数据确定输入医学图像体积的约束搜索范围。 第一训练分类器用于检测约束搜索范围内的位置候选。 使用训练数据中的取向示例从位置候选者生成位置取向假设。 第二训练分类器用于从位置定向假设检测位置方向候选。 基于训练数据中的比例示例,从位置定位候选生成相似度转换假设。 第三训练分类器用于从相似变换假设检测相似变换候选,并且相似变换候选定义医学图像体积中的3D解剖对象的位置,平移和比例。

    Method and system for generating a four-chamber heart model
    64.
    发明申请
    Method and system for generating a four-chamber heart model 有权
    用于产生四室心脏模型的方法和系统

    公开(公告)号:US20080262814A1

    公开(公告)日:2008-10-23

    申请号:US12082143

    申请日:2008-04-09

    IPC分类号: G06G7/60

    摘要: A method and system for building a statistical four-chamber heart model from 3D volumes is disclosed. In order to generate the four-chamber heart model, each chamber is modeled using an open mesh, with holes at the valves. Based on the image data in one or more 3D volumes, meshes are generated and edited for the left ventricle (LV), left atrium (LA), right ventricle (RV), and right atrium (RA). Resampling to enforce point correspondence is performed during mesh editing. Important anatomic landmarks in the heart are explicitly represented in the four-chamber heart model of the present invention.

    摘要翻译: 公开了一种用于从3D体积构建统计四室心脏模型的方法和系统。 为了产生四腔心脏模型,每个腔室都使用开放的网格进行建模,在阀门处有孔。 基于一个或多个3D体积中的图像数据,为左心室(LV),左心房(LA),右心室(RV)和右心房(RA)生成并编辑网格。 在网格编辑期间执行重新采样以强制点对应。 在本发明的四腔心脏模型中明确地表示心脏中的重要解剖学标志。

    SYSTEM AND METHOD FOR LEARNING RELATIVE DISTANCE IN A SHAPE SPACE USING IMAGE BASED FEATURES
    65.
    发明申请
    SYSTEM AND METHOD FOR LEARNING RELATIVE DISTANCE IN A SHAPE SPACE USING IMAGE BASED FEATURES 有权
    使用基于图像的特征在形状空间中学习相对距离的系统和方法

    公开(公告)号:US20070046696A1

    公开(公告)日:2007-03-01

    申请号:US11464851

    申请日:2006-08-16

    IPC分类号: G09G5/00

    摘要: A system and method for identifying a shape of an anatomical structure in an input image is disclosed. An input image is received and warped using a set of warping templates resulting in a set of warped images. An integral image is calculated for each warped image. Selected features are extracted based on the integral image. A boosted feature score is calculated for the combined selected features for each warped image. The warped images are ranked based on the boosted feature scores. A predetermined number of warped images are selected that have the largest feature scores. Each selected warped image is associated with its corresponding warping template. The corresponding warping templates are associated with stored shape models. The shape of the input image is identified based on the weighted average of the shapes models.

    摘要翻译: 公开了一种用于识别输入图像中的解剖结构的形状的系统和方法。 使用一组翘曲模板接收和扭曲输入图像,产生一组翘曲图像。 为每个弯曲图像计算整体图像。 基于积分图像提取所选特征。 对于每个弯曲图像的组合选定特征,计算提升的特征分数。 翘曲的图像根据提升的特征得分进行排名。 选择具有最大特征分数的预定数量的翘曲图像。 每个选择的变形图像与其相应的翘曲模板相关联。 相应的变形模板与存储的形状模型相关联。 基于形状模型的加权平均值来识别输入图像的形状。

    Method and system for physiological image registration and fusion
    67.
    发明授权
    Method and system for physiological image registration and fusion 有权
    生理图像配准和融合的方法和系统

    公开(公告)号:US09547902B2

    公开(公告)日:2017-01-17

    申请号:US12562483

    申请日:2009-09-18

    IPC分类号: G06K9/00 G06T7/00 G06K9/62

    摘要: A method and system for physiological image registration and fusion is disclosed. A physiological model of a target anatomical structure in estimated each of a first image and a second image. The physiological model is estimated using database-guided discriminative machine learning-based estimation. A fused image is then generated by registering the first and second images based on correspondences between the physiological model estimated in each of the first and second images.

    摘要翻译: 公开了一种用于生理图像配准和融合的方法和系统。 估计每个第一图像和第二图像中的目标解剖结构的生理模型。 使用数据库引导的基于判别机器学习的估计来估计生理模型。 然后通过基于在第一和第二图像中的每一个中估计出的生理模型之间的对应来登记第一和第二图像来生成融合图像。

    Method and system for generating a four-chamber heart model
    68.
    发明授权
    Method and system for generating a four-chamber heart model 有权
    用于产生四室心脏模型的方法和系统

    公开(公告)号:US09275190B2

    公开(公告)日:2016-03-01

    申请号:US12082143

    申请日:2008-04-09

    IPC分类号: G06F19/00

    摘要: A method and system for building a statistical four-chamber heart model from 3D volumes is disclosed. In order to generate the four-chamber heart model, each chamber is modeled using an open mesh, with holes at the valves. Based on the image data in one or more 3D volumes, meshes are generated and edited for the left ventricle (LV), left atrium (LA), right ventricle (RV), and right atrium (RA). Resampling to enforce point correspondence is performed during mesh editing. Important anatomic landmarks in the heart are explicitly represented in the four-chamber heart model of the present invention.

    摘要翻译: 公开了一种用于从3D体积构建统计四室心脏模型的方法和系统。 为了产生四腔心脏模型,每个腔室都使用开放的网格进行建模,在阀门处有孔。 基于一个或多个3D体积中的图像数据,为左心室(LV),左心房(LA),右心室(RV)和右心房(RA)生成并编辑网格。 在网格编辑期间执行重新采样以强制点对应。 在本发明的四腔心脏模型中明确地表示心脏中的重要解剖学标志。