Abstract:
In a time division, multiple access system, a base station (102) transmits an isochronous beacon (404, 422) at the start of each frame (400), conveying control and timing information. Following the isochronous beacon (404), isochronous time slots (414, 416, 418, 420) are dynamically allocated for communication of isochronous data. After communication of the isochronous data, the remainder of the frame (400) before the next isochronous beacon (422) is used for transmission of packets of asynchronous data. This technique gives priority to the isochronous data, which is real time, while also maximizing the bandwidth allocated for asynchronous data. A single transmitter circuit (124, 158) and receiver circuit (122, 156) at each station are used for communication of both isochronous data and asynchronous data.
Abstract:
A method for providing isolation between first and second receivers (314, 316) located within a radio (300) is configured in software. The first receiver (314) synchronizes to the second receiver (316) in their respective battery saver modes such that the two receivers are never on at the same time.
Abstract:
A method for providing two-way calling between first and second handsets (402, 404) using a base station (406) and a paging terminal (412). The method for making the call includes storing a base line phone number for each line within the base station (406). A communication link is established between the first handset (402) and the base station (406) and between the base station (406) and the paging terminal (412). The paging terminal (412) prompts the caller for information to be sent to the second handset and the caller responds by entering a sequence that allows the base station itself to forward the base line phone number and an alias code, representing the identification of the first handset, to the paging terminal (412). The paging terminal (412) then pages the second handset (404) with the base line phone number and the alias code. Any communciations device may return the call by calling the base line phone number and entering the alias code, thus establishing a communications link with the first handset (402).
Abstract:
A base site circuit (38) for operating in a communication system (10) having a plurality of base sites capable of allocating a communication channel for use by a communication unit (16) in response to a communication channel request from the communication unit. The base site circuit includes a receiver (34) that operates in a low sensitivity mode when there are no communication channel requests received, and that operates in a high sensitivity mode which is activated by a control signal. The base site further includes a transmitter (34) which is activated by the control signal and a control circuit (32) coupled to both the receiver and the transmitter, for controlling the receiver and the transmitter. The control circuit (32) provides the control signal to the transmitter and to the receiver, in response to a communication channel request.
Abstract:
A digital communication device (10) comprises a signal quality detector (18) that determines the quality of the received signals and instantaneously mutes and unmutes the voice output (22) of the digital radio communication device when the quality drops below a selected level to prevent noise bursts from being heard by the user of the communication device.
Abstract:
An electronic device (100) operating on a battery voltage (126) is disclosed having a regulator (108) for producing a first reference voltage (106) and a second reference voltage (110). The electronic device (100) includes an A/D converter (114) for comparing the battery voltage (126) to the first reference voltage (106) to produce a first sample. The A/D converter (114) also compares the second reference voltage (110) to the first reference voltage (106) to produce a second sample. The two samples are then subtracted at a micro-computer (112) to produce a difference sample. The micro-computer (112) compares the difference sample to a first value and detects low battery conditions when the difference sample is below the first value.
Abstract translation:公开了一种基于电池电压(126)操作的电子设备(100),具有用于产生第一参考电压(106)和第二参考电压(110)的调节器(108)。 电子设备(100)包括用于将电池电压(126)与第一参考电压(106)进行比较以产生第一样品的A / D转换器(114)。 A / D转换器(114)还将第二参考电压(110)与第一参考电压(106)进行比较以产生第二样本。 然后将两个样品在微计算机(112)处减去以产生差异样品。 微型计算机(112)将差异样本与第一值进行比较,并且当差异样本低于第一值时检测低电量条件。
Abstract:
A low profile antenna comprised of a driven element and a parasitic element spaced above a ground plane. The driven element is connected at one end to the feedpoint of the radio device to which it is attached, the opposite end thereof being free. The parasitic element is connected to the ground plane by its end nearest the feedpoint, the opposite end thereof being free. In the preferred embodiment the parasitic element length and the driven element length are both approximately equal to a quarter wavelength at the operating frequency.
Abstract:
A method and apparatus are provided for generating a personalized radio channel playlist by simultaneously buffering tracks from multiple received channels from one or more source streams and selectively playing back tracks from the buffered channels. Navigation tools permit users to skip buffered songs in their playlist (e.g., skip forward and backward). Users can specify favorite channels for building personal playlists, or multiple default playlist channels can be provided (e.g., by genre). Thumbs up/down buttons on the radio receiver permit entering a song or artist being played back into a favorites list that is used to search all channels for matches or a banned list used to block songs from future playlists. A matched channel carrying the favorite can be added to a playlist. Segments on the playlist can be played back in full or truncated to facilitate preview of playlist segments.
Abstract:
The invention relates generally to a receiver unit in a digital broadcast system for receiving a broadcast signal comprising content segments and control data, and generating an output signal using the content segments and previously stored content segments. The previously stored content segments are retrieved from a local memory device using the control data and inserted among the received content segments.
Abstract:
The invention relates generally to a receiver unit in a digital broadcast system for receiving a broadcast signal comprising content segments and control data, and generating an output signal using the content segments and previously stored content segments. The previously stored content segments are retrieved from a local memory device using the control data and inserted among the received content segments.