摘要:
The invention relates to a device for fastening a sensor assembly (1) on a motor vehicle, especially a radar sensor having at least one detection zone in the sensor direction, the sensor assembly (1) being located in the area behind a motor vehicle add-on part (2), in particular a bumper, and a moulded part (3) being arranged between the sensor assembly (1) and the motor vehicle add-on part (2). According to the invention, the moulded part (3) is a solid part, the moulded part (3) is designed to transmit the sensor signals in the detection zone, on its side facing the assembly, the moulded part (3) positively encloses at least part of the sensor assembly (1) in, and at right angles to, the sensor direction, and on its side facing the add-on part, the moulded part (3) has a surface (3a) that is shaped complementary to, and lies flat against, the surface (2a) of the motor vehicle add-on part (2).
摘要:
The present invention relates to a crane control for a crane arranged on a ship, having a load moment limitation system which determines a maximum permitted payload, wherein the load moment limitation system is in communication with a measuring unit for measuring the movement of the ship and determines the maximum permitted payload on the basis of data of the measuring unit.
摘要:
The invention relates to a system for determining a position by emitting a first laser beam (7) by a laser source (6) positioned in a reference system onto a detector (1) and simultaneously detecting the first laser beam (7) by the detector (1), thus defining an emission direction of the laser source (7). The detector (1) has a segmented detection area comprising a plurality of discrete partial detection areas (17), each having a defined partial detection direction and at least two partial detection directions thereof being different. When detecting the first laser beam (7), an impingement point (9) of the first laser beam (7) on the detector (1) is detected by means of at least one partial detection area (17), and when determining the incidence direction (10), said direction is derived from the at least one partial detection direction. The location of the detector (1) relative to the laser source (6) and the reference system is then determined using the emission direction and the incidence direction (10).
摘要:
The present disclosure relates to a system for determining the load mass of a load carried by a hoist cable of a crane, said system comprising a measurement arrangement for measuring the cable load in the hoist cable and a calculation unit for determining the load mass on the basis of the cable force, wherein the calculation unit has a compensation unit which describes and at least partly compensates the effect of the indirect determining of the load mass via the cable force in a model.
摘要:
The present invention relates to a crane for handling a load hanging on a load cable, comprising a slewing gear for rotating the crane, a luffing gear for luffing up the boom, and a hoisting gear for lowering or lifting the load hanging on the load cable, with a control unit for calculating the actuation of slewing gear, luffing gear and/or hoisting gear, wherein the calculation of the actuation commands for actuating slewing gear, luffing gear and/or hoisting gear is effected on the basis of a desired movement of the load indicated in Cartesian coordinates.
摘要:
The present invention relates to a crane control for the control of a hoisting gear of a crane which takes account of oscillation dynamics based on the elasticity of the hoist rope on the control of the hoisting gear and reduces them by a suitable control of the hoisting gear.
摘要:
In a method for gauging surfaces (7″), in which a frequency-modulated laser beam is generated, the laser beam is emitted onto the surface as measuring radiation (MS), the measuring radiation (MS) backscattered from the surface (7″) is received and the distance between a reference point and the surface (7″) is measured interferometrically, wherein the measuring radiation (MS) is emitted and received while the surface to be gauged is being scanned, and a measuring arm and a reference interferometer arm with a partially common beam path are used, deviations from the essentially perpendicular impingement of the measuring radiation (MS) on the surface (7″) are taken into account algorithmically during distance measurement and/or are avoided or reduced during scanning by controlling the emission of the measuring radiation (MS).
摘要:
In order to detect the exchange of a module, identified by a serial number, in a microprocessor system,a code number, which is obtained from the serial number by using an encryption method, as well as information required for calculating the serial number from the code number, are stored in the microprocessor system;the code number is read and an unencrypted serial number is calculated from the code number with the aid of the information; andthe decrypted serial number thus obtained is compared to the serial number of the module and the module is detected as exchanged if its serial number does not match the decrypted serial number.
摘要:
Disclosed is a geodetic target object comprising at least one reflector surface, a receive channel with a detector (18) for receiving electromagnetic radiation (ES) transmitted by a measuring unit (2″), and a transmit channel with a radiation source (13′). The associated transmission port and/or reception port is/are integrated into the reflector surface or is/are embodied so as to adjoin the reflector surface such that radiation (RS) that is modulated for transmitting data can be transmitted in the direction of the measuring unit (2″) within the cross section (5″) of the radiation (ES) generated by the measuring unit (2″).
摘要:
The present invention represents a procedure for compensating the heave movement of offshore cranes. The dynamic model of the compensation actuator (hydraulically operated winch) and the load hanging on a rope are derived. Based on this model, a path-tracking control unit is developed. To compensate the movement of the ship/watercraft caused by waves, the heave movement is defined as a time-varying disturbance and is analyzed with respect to uncoupling conditions. With a model expansion, these conditions are satisfied, and an inversion-based uncoupling control law is formulated. To stabilize the system, an observer is used for reconstructing the unknown state by means of a force measurement. Furthermore, the compensation efficiency can be improved by predicting the heave movement. There is proposed a prediction method in which no ship/watercraft models or properties are required. The simulation and measurement results validate the heave compensation method.