摘要:
Measurement method where a code projection which is dependent on a three-dimensional position of a code carrier relative to a sensor arrangement is generated on a sensor arrangement, and at least part of the code projection is captured. An angular position of the code carrier with reference to the defined axis of rotation is ascertained and a current measurement position of the measurement component relative to a base is determined, wherein, a position value for at least one further degree of freedom of the code carrier relative to the sensor arrangement is ascertained on the basis of the code projection and is taken into account to determine the current measurement position, and a relative position of the connecting element with respect to the holder and/or the deformation thereof is determined from the position value in the form of a change in shape or size.
摘要:
An optical measurement method for determining 3D coordinates of a plurality of measurement points on a measurement object surface. The measurement object surface is illuminated with a pattern sequence of different patterns by a projector, an image sequence of the measurement object surface illuminated with the pattern sequence is recorded with a camera system, and the 3D coordinates of the measurement points are determined by evaluating the image sequence, in particular wherein a succession of brightness values for identical measurement points on the measurement object surface is ascertained in respective images of the recorded image sequence. Translational and/or rotational accelerations of the projector, of the camera system and/or of the measurement object are measured here and, in dependence on the measured accelerations, the illumination of the measurement object surface and/or the recording of the image sequence is/are reactively adapted, in particular temporally substantially directly and live during the measurement process.
摘要:
The invention relates to a method and a system for the high-precision positioning of at least one object in a final location in space. An object (12) is gripped and held by the industrial robot (11) within a gripping tolerance. A compensating variable, which corrects the gripping tolerance, is determined for the industrial robot (11). The object (12) is adjusted with high precision into a final location by the following steps, which repeat until reaching the final location at a predetermined tolerance: recording of image recordings by recording units (1a, 1b); determining the current location of the object (12) in the spatial coordinate system from the positions (Pa, Pb) of the recording units (1a, 1b), the angular orientations of cameras (2a, 2b) of the recording units (1a, 1b) which are detected by angle measuring units (4a, 4b), the image recordings, and the knowledge of features (13) on the object (12); calculating the location difference between the current location of the object (12) and the final location; calculating a new target position of the industrial robot (11) in consideration of the compensating variable from the current position of the industrial robot (11) and a variable which is linked to the location difference; adjusting the industrial robot (11) into the new target position.
摘要:
The invention concerns a handheld, dynamically movable surface spattering device, comprising at least one nozzle means for an expelling of a spattering material onto a target surface and a nozzle control mechanism to control characteristics of the expelling of the nozzle means. Furthermore, it comprises a spattering material supply, a storage with desired spattering data, which is predefined and comprised in a digital image or CAD-model memorized on the storage, a spatial referencing unit, to reference the spattering device relative to the target surface and a computation means to automatically control the expelling by the nozzle control mechanism according to information gained by the spatial referencing unit and according to the desired spattering data is evaluated and adjusted by changing the characteristics of expelling of the nozzle means in such a way that the target surface is spattered according to the desired spattering data.
摘要:
An optical measuring system determines coordinates of points for distance measurement. The measuring system includes a radiation source for emitting electromagnetic radiation and a receiving unit having a filter unit for extracting electromagnetic radiation in a defined wavelength range and having, a detector, such that the radiation extracted by the filter unit is detectable by the detector. The filter unit includes at least two mirror elements which are at least partly reflective and constructed in a multilayered fashion. The mirror elements are substantially parallel to one another. Two adjacent mirror elements in each case enclose a cavity and are arranged at a specific distance from one another. An optical thickness is defined by a refractive index of the cavity and by the distance between the mirror elements. Optical thickness varying means operate to varying the optical thickness, such that an extractable wavelength range of the filter unit is varied.
摘要:
In a method for gauging surfaces (7″), in which a frequency-modulated laser beam is generated, the laser beam is emitted onto the surface as measuring radiation (MS), the measuring radiation (MS) backscattered from the surface (7″) is received and the distance between a reference point and the surface (7″) is measured interferometrically, wherein the measuring radiation (MS) is emitted and received while the surface to be gauged is being scanned, and a measuring arm and a reference interferometer arm with a partially common beam path are used, deviations from the essentially perpendicular impingement of the measuring radiation (MS) on the surface (7″) are taken into account algorithmically during distance measurement and/or are avoided or reduced during scanning by controlling the emission of the measuring radiation (MS).
摘要:
A measurement system includes a measuring device and a scanning module having fastening means for fastening the scanning module onto a holder and a beam deflection element that is rotatable by a motor about an axis of rotation to deflect a scanning laser beam. The axis of rotation is arranged at a defined angle relative to the pivoting axis. A second angle measurement functionality determines an angle of rotation from an angle position of the beam deflection element. The measuring device also has a holder designed such that the scanning module can be fastened by means of the fastening means in a module-like manner in a defined position on the measuring device.
摘要:
An optical measuring system determines coordinates of points for distance measurement. The measuring system includes a radiation source for emitting electromagnetic radiation and a receiving unit having a filter unit for extracting electromagnetic radiation in a defined wavelength range and having, a detector, such that the radiation extracted by the filter unit is detectable by the detector. The filter unit includes at least two mirror elements which are at least partly reflective and constructed in a multilayered fashion. The mirror elements are substantially parallel to one another. Two adjacent mirror elements in each case enclose a cavity and are arranged at a specific distance from one another. An optical thickness is defined by a refractive index of the cavity and by the distance between the mirror elements. Optical thickness varying means operate to varying the optical thickness, such that an extractable wavelength range of the filter unit is varied.
摘要:
The invention relates to a method and a surveying system for noncontact coordinate measurement on the object surface of an object to be surveyed in an object coordinate system. With a 3D image recording unit, a first three-dimensional image of a first area section of the object surface is electronically recorded in a first position and first orientation, the first three-dimensional image being composed of a multiplicity of first pixels, with which in each case a piece of depth information is coordinated. The first position and first orientation of the 3D image recording unit in the object coordinate system are determined by a measuring apparatus coupled to the object coordinate system. First 3D object coordinates in the object coordinate system are coordinated with the first pixels from the knowledge of the first 3D image coordinates and of the first position and first orientation of the 3D image recording unit.
摘要:
A laser scanner for detecting spatial surroundings comprises a stator (21), a rotor (1), mounted on the stator (21) to be rotatable about a first rotational axis, and a rotary body (2), mounted on the rotor (1) to be rotatable about a second rotational axis. A laser source (6) and a detector (7) are arranged in the rotor (1). One optical link (9) each is configured on the second rotational axis on every side of the rotary body (2) between the rotor (1) and the rotary body (2) so that emission light can be introduced by the laser source into the rotary body (2) via the first optical link (8) and reception light can be discharge from the rotary body (2) via the second optical link (9). A first rotary drive (25) drives the rotor (21) and a second rotary drive (26) drives the rotary body (2). Two goniometers (4) and evaluation electronics (5) which are connected to the laser source (6) and the detector (7) allow association of a detected distance with a corresponding direction. The rotary body (2) can have a very compact design, is completely passive and therefore does not require any power supply or transmission of signals.