Abstract:
A measuring device comprises a Terahertz, THz, transmitter configured to emit a THz signal to an object to be measured and a THz receiver configured to receive a reflected portion of said THz signal that has been reflected by said object. The said THz transmitter and said THz receiver are arranged in a measuring head of said measuring device. The measuring device may vary a distance between said measuring head and said object to be measured, emit, by means of said THz transmitter, said THz signal to said object to be measured, receive said reflected portion of said THz signal, and determine a first parameter characterizing a detected signal proportional and/or related to said received reflected portion of said THz signal.
Abstract:
An apparatus for transmitting and/or receiving terahertz, THz, radiation, comprising at least one terahertz element which is configured to generate and/or detect a THz signal, and at least one field-shaping element which in particular is assigned to the at least one terahertz element, wherein the at least one terahertz element is arranged in the region of a first surface of the field-shaping element.
Abstract:
A measuring device for detection pf measurement signals during a penetrating movement of a penetrating member into a surface of a test object or during a sensing movement of the penetrating member on the surface of the test object. The measuring device includes a housing which accommodates a force generating device and on which a holding element is arranged remote from the force generating device, which holding element is movable relative to the housing at least in one direction along a longitudinal axis of the housing and which accommodates the penetrating member. The measuring device also includes at least one first measuring element for measuring the penetration depth of the penetrating member into the surface of the test object or a traversing movement of the penetrating member along the longitudinal axis relative to the housing during a sensing movement on the surface of the test object, wherein a transmission element is provided which extends between the force generating device and the penetrating member.
Abstract:
A vacuum chuck for clamping workpieces, in particular wafers, and a measuring device and a method for checking workpieces by way of X-ray fluorescent radiation. The vacuum chuck has a clamping plate having a support surface, having at least one suction connection arranged on a base body for connecting to a negative-pressure device and for clamping the workpiece on the clamping plate by negative pressure received by the base body and having several suction grooves arranged in the clamping plate and are open towards the support surface. The support surface has concentric suction grooves having a suction opening to which a negative-pressure line is connected or which is connected to a work channel. Each suction groove having a separate negative pressure, which is separate to the adjacent suction groove, is selectively controlled by a control valve by a control for supplying the respective negative pressure in the respective suction groove.
Abstract:
The invention relates to a measuring System, a measuring arrangement and a method for detecting measuring signals during a penetration movement of a penetration body (41) into a surface of a test body (14), in particular for hardness measurement or for determining the Scratch resistance of the surface of the test body (14), or for detecting measuring signals during a scanning movement of the penetration body (41) on the surface of the test body (14), in particular for determining the surface roughness, comprising a housing (47) provided with a power generating device (44) which is operatively connected to a penetration body (41) for generating a displacement movement of the penetration body (41) along a displacement axis (48) of the penetration body (41) and which actuates a penetration movement of the penetration body (41) into the surface to be examined of the test body (14), or which positions the penetration body (41) on the surface of the test body (14) for scanning, and further comprising at least one first measuring device (78) for measuring the penetration depth in the surface of the test body (14) or a displacement movement of the penetration body (41) along its displacement axis (48) during a scanning movement on the surface of the test body (14), wherein the power generating device (44) actuates the displacement movement of the penetration body (41) by means of a magnetic force.
Abstract:
A measuring probe for the measurement of the thickness of thin layers, includes a housing, at least one sensor element which is mounted with at least one spring element to be flexible with respect to the housing, the sensor element having a spherical positioning cap pointing towards the measuring surface of an object of measurement against a touchdown direction and along a longitudinal axis thereof, and an attenuating device on the housing which acts in the touchdown direction of the at least one sensor element before the sensor element is fitted onto the measuring surface of the object of measurement and attenuates the touchdown movement of the at least one sensor element in the direction of the measuring surface of the object of measurement.
Abstract:
The invention relates to a measuring probe for non-destructive measuring of the thickness of thin layers on an object with a measuring head, which comprises at least one sensor element for contact on a measurement surface of an object, and with a support device for receiving the measuring head, which is at least partly surrounded by a housing, wherein at least one further measuring head, which is adjacent to and separated from the first measuring head, is arranged on the support device, which can be controlled independently of the first measuring head.
Abstract:
The invention relates to a measuring probe for measuring the thickness of thin films, comprising a housing (12) and at least one sensor element (14, 15), which is supported resiliently with respect to the housing (12) by means of at least one spring element (33, 37) and has a contacting spherical cap (31) pointing opposite the contacting direction and along the longitudinal axis (38) of the sensor element toward the measurement surface (25) of a measurement object (26), wherein a damping device (17) is provided on the housing (12), which damping device acts in the contacting direction (28) of the at least one sensor element (14, 15) before the sensor element (14, 15) contacts the measurement surface (25) of the measurement object (26) and damps the contacting motion of the at least one sensor element (14, 15) in the direction toward the measurement surface (25) of the measurement object (26).
Abstract:
The invention relates to an x-ray fluorescence analysis device, comprising an x-ray source (10) for irradiating a sample (15) with x-radiation (19), an x-ray detector (17) for measuring x-ray fluorescence radiation (16) emitted by the sample (15), and a camera (25) for producing an optical control image (26) of the irradiated measurement point (29) of a sample (15) by means of the optical mirror (20) arranged at an angle in the beam path of the x-ray source (10), which optical mirror comprises a carrier (21) having a minor layer (28) provided on the carrier (21). In order to create an x-ray florescence device by means of which realistic control recordings of the sample to be analysed, in particular of the sampled surface point, are possible, the invention provides that the optical minor (20) has a passage window (23) for the x-radiation (19), which is formed by an opening (23) in the carrier (21) and a foil (22) forming the mirror layer (28) and covering the opening (23) on an outer surface of the carrier (21).
Abstract:
The invention relates to a device to position and align a rotationally-symmetrical body (28) with respect to a measuring device (19) for the implementation of a measurement on the rotationally-symmetrical body (28), having a basic element (24) which has a contact surface (22) on a pin (23) or is allocated to a contact surface (22) on which the rotationally-symmetrical body (28) is supported for the implementation of the measurement, wherein a positioning element (41) which can be moved relative to the contact surface (22) is provided on the basic element (24), said positioning element (41) comprising a prismatic receiver (64), wherein the contact surface (22) is positioned within the prismatic receiver (64) or abuts on this and a movement path of the positioning element (41) towards the basic element (22) corresponds at least to the height of the prismatic receiver (64).