CYCLIC SHIFT DELAY DETECTION USING A CLASSIFIER
    61.
    发明申请
    CYCLIC SHIFT DELAY DETECTION USING A CLASSIFIER 有权
    使用分类器的循环移位延迟检测

    公开(公告)号:US20140153420A1

    公开(公告)日:2014-06-05

    申请号:US13759844

    申请日:2013-02-05

    CPC classification number: H04W24/00 H04B7/0671 H04B7/0828 H04B7/0874

    Abstract: Systems, apparatus and methods for determining a cyclic shift delay (CSD) mode from a plurality of CSD modes is disclosed. A received OFDM signal is converted to a channel impulse response (CIR) signal in the time domain and/or a channel frequency response (CFR) signal in the frequency domain. Matched filters and a comparator are used to determine a most likely current CSD mode. Alternatively, a classifier is used with a number of inputs including outputs from two or more matched filters and one or more outputs from a feature extractor. The feature extractor extracts features in the time domain from the CIR signal and/or in the frequency domain from the CFR signal useful in distinguishing various CSD modes.

    Abstract translation: 公开了用于从多个CSD模式确定循环移位延迟(CSD)模式的系统,装置和方法。 接收到的OFDM信号在时域中被转换为信道脉冲响应(CIR)信号和/或频域中的信道频率响应(CFR)信号。 匹配滤波器和比较器用于确定最可能的当前CSD模式。 或者,分类器使用多个输入,包括来自两个或多个匹配滤波器的输出和来自特征提取器的一个或多个输出。 特征提取器从CIR信号和/或频域中提取时域中的特征,来自用于区分各种CSD模式的CFR信号。

    ON-DEVICE REAL-TIME BEHAVIOR ANALYZER
    63.
    发明申请
    ON-DEVICE REAL-TIME BEHAVIOR ANALYZER 有权
    设备实时行为分析器

    公开(公告)号:US20130304676A1

    公开(公告)日:2013-11-14

    申请号:US13773247

    申请日:2013-02-21

    CPC classification number: G06N99/005 G06N5/043

    Abstract: Methods, systems and devices for generating data models in a communication system may include applying machine learning techniques to generate a first family of classifier models using a boosted decision tree to describe a corpus of behavior vectors. Such behavior vectors may be used to compute a weight value for one or more nodes of the boosted decision tree. Classifier models factors having a high probably of determining whether a mobile device behavior is benign or not benign based on the computed weight values may be identified. Computing weight values for boosted decision tree nodes may include computing an exclusive answer ratio for generated boosted decision tree nodes. The identified factors may be applied to the corpus of behavior vectors to generate a second family of classifier models identifying fewer factors and data points relevant for enabling the mobile device to determine whether a behavior is benign or not benign.

    Abstract translation: 用于在通信系统中生成数据模型的方法,系统和设备可以包括应用机器学习技术来生成使用加强的决策树来描述行为矢量语料库的分类器模型的第一族。 可以使用这样的行为矢量来计算升压决策树的一个或多个节点的权重值。 可以识别分类器模型的因素,其可能基于所计算的权重值来确定移动设备行为是良性还是不良性。 用于升压的决策树节点的计算权重值可以包括计算生成的升压决策树节点的独占应答比率。 识别的因素可以应用于行为矢量语料库以产生第二类分类器模型,其识别与使移动设备能够确定行为是良性还是不良性相关的较少因素和数据点。

    Methods and Systems for Automatic Extraction of Behavioral Features from Mobile Applications
    70.
    发明申请
    Methods and Systems for Automatic Extraction of Behavioral Features from Mobile Applications 审中-公开
    从移动应用程序自动提取行为特征的方法和系统

    公开(公告)号:US20160379136A1

    公开(公告)日:2016-12-29

    申请号:US14751572

    申请日:2015-06-26

    CPC classification number: G06N20/00 G06F21/552 G06F21/566

    Abstract: An aspect computing device may be configured to perform program analysis operation in response to classifying a behavior as non-benign. The program analysis operation may identify new sequences of API calls or activity patterns that are associated with the identified non-benign behaviors. The computing device may learn new behavior features based on the program analysis operation or update existing behavior features based on the program analysis operation. For example, API sequences observed to occur when a non-benign behavior is recognized may be added to behavior features observed during program analysis operation.

    Abstract translation: 方面计算设备可以被配置为响应于将行为分类为非良性来执行程序分析操作。 程序分析操作可以识别与所识别的非良性行为相关联的API调用或活动模式的新序列。 计算设备可以基于程序分析操作学习新的行为特征,或者基于程序分析操作来更新现有行为特征。 例如,当识别到非良性行为时观察到发生的API序列可以被添加到在程序分析操作期间观察到的行为特征。

Patent Agency Ranking