Abstract:
A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP, FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file server. A client device can be adapted to take advantage of the ingestion process. The client device might be configured to optimize use of resources, given the information available to it from the ingestion system. This may include configurations to determine the sequence, timing and construction of block requests based on monitoring buffer size and rate of change of buffer size, use of variable sized requests, mapping of block requests to underlying transport connections, flexible pipelining of requests, and/or use of whole file requests based on statistical considerations.
Abstract:
Method, hardware, device, computer program, and apparatus for positioning mobile devices in unmapped locations based on motion sensor and radio frequency measurements are described. A reference radio signal is received from a transmitter with an unknown absolute position and a reference range measurement is calculated. Mobile device motion sensor data is used to estimate a relative position of the mobile device. A sample radio signal is received from a transmitter with an unknown absolute position and a sample range measurement is calculated. The reference range measurement and the sample range measurement are compared. The estimated motion sensor based position is adjusted according to the result of the comparison.
Abstract:
A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP, FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file server, which might or might not include a cache. A client device can be adapted to take advantage of the ingestion process as well as including improvements that make for a better presentation independent of the ingestion process. In the block-request streaming system, the an ingestion system generates data according to erasure codes and the client device, through various selection and timing of requests for media data and redundant data, can efficiently decode media to provide for presentations.
Abstract:
Disclosed are methods, apparatuses and systems for tracking a location of a mobile device based, at least in part, on measurements over time. In response to measurements, particles in a motion model may be propagated in a first routing graph covering an area. Propagated particles may be indicative of a direction of movement along a second routing graph covering the same area or a larger area in some embodiments.
Abstract:
Step detection accuracy in mobile devices is increased by determining whether swinging is taking place. According to the invention, swinging can be detected using threshold detection, Eigen analysis, hybrid frequency analysis, and/or gyroscope-based analysis, for example. The determination that swinging is (or may be) occurring can impact how the mobile device reports detected steps for step detection. A count of missteps and/or a level of certainty, based on swing detection, can be provided with a step count.
Abstract:
Methods, systems, computer-readable media, and apparatuses for determining a position indicator are presented. In some embodiments, position data indicating a position of a mobile device is obtained. A position indicator is determined based on at least one region of a map. The position of the mobile device is located within the at least one region. The position indicator indicates a map-feature-dependent region of the map. The position indicator is provided.
Abstract:
Various techniques are provided which may be implemented as methods, apparatuses and articles of manufacture for use by a mobile device or one or more computing devices to provide for or otherwise support motion state based mobile device positioning. In an example, a method may be implemented at a computing device to obtain a set of grid points corresponding to an electronic map representative of a particular environment, subdivide the set of grid points to identify two or more subsets of grid points for use in position estimation by a mobile device based, at least in part, on two or more motion states corresponding to the mobile device, and communicate at least one of the two or more subsets of grid points between the computing device and the mobile device.
Abstract:
In one implementation, a method may comprise: storing a user profile indicative of at least one attribute of a user of a mobile station; determining a measurement value based, at least in part, on a signal from at least one sensor on the mobile station; and estimating a location of the mobile station based, at least in part, on an association of the at least one attribute and the measurement value with a context parameter map database.
Abstract:
A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP, FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file server. The system might include controlling the sequence, timing and construction of block requests, time based indexing, variable block sizing, optimal block partitioning, control of random access point placement, including across multiple presentation versions, dynamically updating presentation data, and/or efficiently presenting live content and time shifting.
Abstract:
Various techniques are provided for identifying a position uncertainty of a mobile device, such as, based, at least in part, on a measure of potential hindrance of an estimated trajectory. For example, an example method may comprise estimating a trajectory of the mobile device within a particular environment, determining a measure of potential hindrance for at least a portion of the trajectory based, at least in part, on an electronic map that is indicative of a presence or an absence of one or more obstacles, and presenting an indication of a position uncertainty to a user of the mobile device. The position uncertainty may be based, at least in part, on the measure of potential hindrance.