Abstract:
Disclosed is a piston (1) for a combustion engine comprising a closed ring element (6) which is disposed in the radially outer peripheral area of the piston head (5) and is joined to the basic piston member (4) by means of a high-temperature resistant adhesive. The basic member (4) is made of forged aluminum while the ring element (6) is made of Ni-resist. A closed, annular cooling duct (15) that comprises holes for delivering and discharging cooling oil is placed between the basic member (4) and the ring element (6), resulting in a piston (1) that has a simple design, can be produced at low cost, and can be subjected to great thermal loads.
Abstract:
Disclosed is a two-part piston (1) for a combustion engine comprising a combustion chamber (16) in the piston head (13). The piston (1) is composed of a basic member (5) and a top part (6) that is screwed to the basic member (5). In order for the combustion pressure to act substantially upon the basic member (5), which is provided with great mechanical stability and load-bearing capacity relative to the pressure prevailing in the combustion chamber, the bottom part of the combustion chamber (16) is molded into the basic member (5), the top part (6) is configured in an essentially annular manner, and the top part (6) enlarges the combustion chamber (16) at the piston head end while delimiting the same in a radially outward direction similar to a collar (19).
Abstract:
The invention relates to an aluminum piston for a combusion engine having a ring element, which is made of NiResist, is placed in the radially outer edge area of the piston head, and which, together with the base body, forms an annular cooling channel. The ring element is fastened to the base body of the piston via a screwed connection.
Abstract:
An exemplary piston assembly and method of making the same are disclosed. An exemplary piston assembly may include a piston crown and skirt. The crown may include radially inner and outer crown mating surfaces, and the crown may define at least in part a cooling gallery extending about a periphery of the crown. The skirt may further include an inner collar wall disposed radially inwardly of a radially inner interface region and extending upwards to a free end. The collar wall may generally enclose the radially inner interface region from the central region.
Abstract:
A method for the production of a piston made of steel, for an internal combustion engine, in which the upper piston part is produced using the forging method, and the lower piston part is produced using the forging or casting method, and they are subsequently welded to one another. To simplify the production method and make it cheaper, the upper piston part is forged using the method of hot forming and of cold calibration, to finish it to such an extent that further processing of the combustion bowl and of the upper cooling channel regions can be eliminated.
Abstract:
A piston for an internal combustion engine has a piston head that has a circumferential cooling channel as well as a combustion bowl having a circumferential bowl wall that makes a transition into a piston crown by way of a bowl edge region. The combustion bowl is formed at least in part by a piston base body and the bowl wall is formed at least in part from an insert. The insert is connected with the piston base body by means of beam welding. A lower weld seam is configured in the bowl wall, which seam encloses an acute angle with the piston center axis (M) and ends in the lower half of the cooling channel. An upper weld seam runs from the cooling channel ceiling to the piston crown and is disposed centered or radially offset toward the outside, with reference to the clear width of the cooling channel.
Abstract:
The present invention relates to a piston (10, 110, 210) for an internal combustion engine, having a first piston component (11) and a second piston component (12), which jointly form a circumferential cooling channel (23) that is open toward the second piston component (12), whereby the first piston component (11) forms at least a part of a piston crown (13) as well as an outer circumferential wall (34) of the cooling channel, characterized in that the outer circumferential wall (34) of the cooling channel (23) has a circumferential projection (32) below the piston crown (13), which projection is provided with a circumferential guide surface (33) for coolant, directed radially inward.
Abstract:
A method for producing a piston for an internal combustion engine, composed of first and second piston components, has the following steps: (a) providing a blank of the first piston component composed of a tempered or precipitation-hardened steel, having at least one joining surface, (b) providing a blank of the second piston component composed of a tempered or precipitation-hardened steel, having at least one joining surface, (c) tempering or precipitation-hardening the blanks, (d) friction-welding the joining surfaces of the blanks to produce a piston blank, with the formation of at least one friction-welding seam and a heat influence zone in the region of the at least one friction-welding seam, (e) annealing or low-stress annealing of the piston blank, thereby obtaining the heat influence zone(s), (f) re-machining and/or finishing the piston blank to produce a piston. A piston so produced is also provided.
Abstract:
A method for the production of a piston has the following method steps: (a) providing a blank of a piston base body, having an outer joining surface, an inner joining surface and a circumferential lower cooling channel part that runs between the two joining surfaces, (b) providing a blank of a piston ring element, having an outer joining surface, an inner joining surface and a circumferential upper cooling channel part that runs between the two joining surfaces, (c) forming a circumferential widened region on at least one joining surface, the widened region extending toward the related cooling channel part, (d) connecting the blank of the piston base body with the blank of the piston ring element by way of their joining surfaces, by friction welding, to produce a piston blank, and (e) machining the piston blank further and/or finish-machining it to produce a piston.
Abstract:
A method for the production of a multi-part piston for an internal combustion engine involves producing an upper piston part having a piston crown as well as an inner and an outer support element, and producing a lower piston part having a skirt and having pin boss supports and pin bosses connected with the pin boss supports, and an inner and an outer support element. A separate cooling oil collector having at least one cooling oil opening is inserted into the upper piston part or the lower piston part. The upper piston part and the lower piston part are connected in such a manner that the inner and outer support elements of the upper and lower piston parts, delimit an outer circumferential cooling channel and a cavity that is open toward the pin bosses and provided with the cooling oil collector.