Abstract:
Technical solutions are described for scaling a stability signal in a steering system. An example method includes computing, by a torque boost module, an assist torque command to cause a motor of the steering system to generate an assist torque. Further, the method includes computing, by a stability compensation module, a stabilized torque command based on an input signal, the stabilized torque command modifying the assist torque command. Further, the method includes computing, by a stability monitoring module, a stability scaling factor to adjust the stabilized torque command based on a duration and severity of an instability detected in the input signal.
Abstract:
An embodiment of a method of controlling one or more components of a vehicle includes receiving a reference steering command and one or more measurement signals related to a steering system of a vehicle, and estimating, by a processing device, a state of the steering system based on the one or more measurement signals, the steering system including at least a handwheel and a steering motor. The method also includes determining a maximum state achievable by the steering system at one or more times subsequent to receiving the one or more measurement signals, and controlling, by a control module, the steering system based on the steering reference command and the maximum state.
Abstract:
A method of controlling an electric power steering system is provided. The method estimates steering rack force to be caused by a tire and a surface of a ground with which the tire is in contact in response to determining that one or more hand wheel torque sensors are not enabled. The method generates a steering assist torque command based on the estimated steering rack force. The method controls the electric power steering system using the steering assist torque command.
Abstract:
A system and a method of controlling a power steering system of a vehicle are provided. A control system includes a control module operable to determine a rack force of the vehicle based on at least one of a motor velocity, a driver torque and a motor torque, determine a plurality of modeled rack forces based on a roadwheel angle and a vehicle speed, compare the rack force to the plurality of modeled rack forces to generate a friction level included in a control signal, and send the control signal to the power steering system.
Abstract:
A method of controlling an electric power steering system of a vehicle is provided. The method estimates steering rack force to be caused by a tire of the vehicle and a surface of a ground with which the tire is in contact in response to determining that one or more hand wheel torque sensors of the vehicle are not enabled. The method generates a steering assist torque command based on the estimated steering rack force. The method controls the electric power steering system using the steering assist torque command.