Abstract:
An emergency steering system for a vehicle includes a memory including instructions that, when executed by a processor, cause the processor to: receive information corresponding to an environment external to the vehicle; identify an obstacle in the environment external to the vehicle using the information; determine a distance between the vehicle and the obstacle; determine whether a collision is imminent; in response to determining that a collision is imminent, determine whether the vehicle can move within a lane of travel to avoid the collision; in response to determining that the vehicle can move within the lane of travel to avoid the collision, determine a trajectory of travel for the vehicle; generate a steering assist angle command based on the trajectory of travel; and control position of a steering mechanism of the vehicle using the steering assist angle command and a measured steering angle.
Abstract:
A control system for a power steering system includes an error module that generates an error signal based on a difference of an estimated output vector and an output vector, a scaling module that calculates a feedback correction signal based on the error signal and an observer gain value, an extended state vector estimation module that determines an extended state vector estimate based on the feedback correction signal and a motor torque command, and a gain module that applies a gain to the extended state vector estimate to generate an estimated driver torque signal, the estimated driver torque signal is applied in control of the power steering system.
Abstract:
Technical solutions are described for providing driver warning using steering systems. An example steering system includes a motor control system that sends a command to a motor. The steering system further includes a fault monitoring system that sets a fault indication flag by monitoring one or more components of the steering system. The steering system further includes a driver warning feedback system that generates a warning injection signal based on and in response to the fault indication flag being set. Further, the motor control system generates a driver feedback by modifying the command to the motor using the warning injection signal, and sending the modified command to the motor.
Abstract:
A system for determining driver torque includes a rack torque estimator module that determines an estimated rack torque value based on a motor angle, and a motor velocity. The system further includes a driver intent detection module that computes a disturbance torque scaling factor based on the estimated rack torque value. The system further includes a blend module that generates a motor torque assist command based on a scaled value of the estimated rack torque value using the disturbance torque scaling factor.
Abstract:
A control system for a power steering system includes a motor; a control module in communication with the motor, the control module providing a compensated velocity loop command to the motor. The control module includes a stability compensation filter module that receives a vehicle speed and a velocity loop command, the stability compensation filter applies a second order filter on the velocity loop command to generate the compensated velocity loop command used by the motor.
Abstract:
A system for actively damping a power steering system includes a damping activation module that generates a damping activation signal based on a motor velocity signal, a t-bar torque signal, and a final motor command; a command calculation module that generates a calculated command based on the motor velocity signal and a vehicle speed signal; and a damping calculation module that generates a damping command based on the damping activation signal and the calculated command, the damping command reduces a motor velocity of a motor of the power steering system to mitigate a rack disturbance.
Abstract:
A payload estimation system and a method for estimating payload estimation using electric power steering (EPS) signals are provided. In certain embodiments, the aspects of the invention may include: receiving, by a payload detection module, multiple EPS signals to generate an additional axle load factor, determining, by a blend factor table, a load blend factor according to the additional axle load factor, generating, by a first multiplier, a blended nominal base assist signal by combining the load blend factor and a handwheel torque signal processed by a nominal base assist module, generating, by a second multiplier, a blended highload base assist signal by combining the load blend factor and the handwheel torque signal processed by a highload base assist module, and combining, by a merge module, the blended nominal base assist and the blended highload base assist to generate a motor torque command for the EPS system.
Abstract:
A control system for a power steering system includes an error module that generates an error signal based on a difference of an estimated output vector and an output vector, a scaling module that calculates a feedback correction signal based on the error signal and an observer gain value, an extended state vector estimation module that determines an extended state vector estimate based on the feedback correction signal and a motor torque command, and a gain module that applies a gain to the extended state vector estimate to generate an estimated driver torque signal, the estimated driver torque signal is applied in control of the power steering system.
Abstract:
A method for controlling a motor in an electrical power steering system is provided. The method generates a damping torque command for reducing an undesired torque to be generated by the motor. The method generates an assist torque command that specifies a desired torque to be generated by the motor. The method determines whether to send the damping torque command to the motor as a function of a hand wheel velocity and a hand wheel angle. The method combines the assist torque command and the damping torque command to send to the motor when it is determined that the damping torque command is to be sent to the motor.
Abstract:
Technical solutions are described for providing failsafe assist torque in steering systems. An example method includes determining, by a first controller, a first assist torque signal using a first set of torque sensor signals from a first sensor and a second set of torque sensor signals from a second sensor, the first sensor corresponding to the first controller, and the second sensor corresponding to a second controller. The method further includes determining, by the second controller, a second assist torque signal using the first and second sets of torque sensor signals. Further the method includes generating, by a motor, an assist torque using the first and second assist torque signals, and in response to the first controller receiving a diagnostic signal indicating a failure of the first torque sensor, determining by the first controller, the first assist torque signal using only the second set of torque sensor signals.