摘要:
A steering control device capable of transmitting road surface state to a driver is provided. An ideal vehicle model computes first spring reaction force torque based on a target pinion angle and second spring reaction force torque based on at least lateral acceleration as components of a spring component of a steering assist force. The ideal vehicle model combines the first and second spring reaction force torques with specified proportions of use to compute the spring component. The ideal vehicle model decides the proportions of use of the first and second spring reaction force torques on the basis of a distribution gain set in accordance with the difference value between the first and second spring reaction force torques. The ideal vehicle model increases the proportion of use of the second spring reaction force torque as the difference value between the first and second spring reaction force torques is increased.
摘要:
A steering control device for a vehicle, the steering control device controlling a steering device, the steering device having a steering mechanism (10) configured to steer wheels (15) and a drive unit (40) configured to provide the steering mechanism (10) with steering force for the wheels (15), the steering control device comprising: a detection unit (30) configured to detect turning of the wheels (15); a determination unit (30) configured to determine whether the vehicle is in a stationary steering state; and a control unit (30) configured to increase, when the vehicle is determined to be in a stationary steering state as a result of the determination of the determination unit (30), the steering force to be provided to the steering mechanism (10) than a value upon determination that the vehicle is not in a stationary steering state, wherein the control unit (30) is further configured to decrease the steering force to be provided to the steering mechanism (10) than before when the turning of the wheels (15) is detected as a result of providing the steering force with the steering mechanism (10) when the vehicle has been determined to be in a stationary steering state.
摘要:
A vehicle control system defines a set of predetermined criteria relating to the motion of the vehicle and a set of vehicle actions associated with the set of predetermined criteria. The vehicle actions each specify a steering action and/or a braking action. Friction data indicative of a frictional attribute (for example, coefficient of friction) of the contact region between the vehicle and the surface is received. The predetermined criteria are modified based on the friction data. When one or more of the predetermined criteria are met, the system applies the corresponding steering and/or braking actions.
摘要:
A motor vehicle including an adjustable steering assistance is disclosed. The adjustable steering assistance includes an evaluation unit for evaluating the grip of a road travelled, in which the extent of the steering assistance is variable as a function of the result of the road grip evaluation. The effectiveness of the steering assistance adjustment is due to the fact that the driver is accustom to the hand moment exerted on the steering wheel during steering, conventionally as a fixed relationship to the torque, which for steering the wheels of the motor vehicle has to be exerted thereon. Consequently, the lower the steering resistance the less road grip as a general rule. In that the extent of the steering assistance is varied, a road with less grip can thus be suggested to the driver in order to prompt him to a correspondingly careful driving style.
摘要:
A method for resetting a steering wheel of a motor vehicle having electric power assisted steering, with a resetting torque being determined in order to move the steering wheel from a diffracted steering position to a neutral position. The resetting torque differs for low and high friction values wherein a signal produced in response to a determined yaw rate is introduced into the determination of the resetting torque. The contribution of the yaw-rate based resetting torque to the total resetting torque increases as the vehicle speed increases.
摘要:
A method for operating a steering system, a steering system of this type and a steering device of a vehicle are disclosed herein. The vehicle has a front axle and a rear axle, a slip angle of the front axle being influenced by steering of the rear axle in such a way that the slip angle remains constant over a steering wheel angular range.
摘要:
A vehicle control system defines a set of predetermined criteria relating to the motion of the vehicle and a set of vehicle actions associated with the set of predetermined criteria. The vehicle actions each specify a steering action and/or a braking action. Friction data indicative of a frictional attribute (for example, coefficient of friction) of the contact region between the vehicle and the surface is received. The predetermined criteria are modified based on the friction data. When one or more of the predetermined criteria are met, the system applies the corresponding steering and/or braking actions.
摘要:
A rear wheel toe angle control device that ensures a stable steering performance even when the cornering powers of laterally opposing rear wheels are different from each other. When a reduction in the cornering power of one of the rear wheels owing to a drop in the tire pressure or a temporary tire is determined, a control unit changes the toe angle of the other rear wheel in a direction to increase the slip angle of thereof, and additionally changes the toe angle of the one rear wheel in a direction to decrease the slip angle of thereof. The combined cornering power of the two rear wheels is maintained at a normal level, and the steering performance of the turning vehicle remains the same. This also contributes to a stable running performance of the vehicle, and a maximization of the total available cornering power of the rear wheels.
摘要:
A command interpreter for a vehicle stability enhancement system that uses a three degree-of-freedom vehicle model employing non-linear suspension and tire characteristics to calculate stability commands. The command interpreter includes a calculator that calculates a front tire lateral force, a calculator that calculates a rear tire lateral force and a command calculator that calculates a yaw-rate command signal, a lateral velocity command signal and a roll angle command signal. The front tire lateral force calculator and the rear tire lateral force calculator calculate the front and rear side-slip angles. The side-slip angles are then converted to a lateral force, where the conversion is selected based on the tire vertical load. The rear tire lateral force is modified for high side-slip angles so that the rear tire lateral force does not become saturated.
摘要:
Various state amounts of a vehicle body detected by various types of sensors are captured (step 102). A maximum frictional force Fimax is calculated for each of wheels (steps 104 to 110). By use of the maximum frictional force Fimax and other physical quantities, a performance function not dependent on respective magnitudes of a vehicle body generating force and a yaw moment is defined, which performance function is prepared by means of a performance function in a case in which the vehicle body generating force is larger than the yaw moment, and a performance function in a case in which the vehicle body generating force is not larger than the yaw moment (step 112). A resultant force qi of tire generating forces acting on respective wheels is calculated by means of a third performance function (step 114), and braking and driving forces of each wheel, and a steering angle of each wheel are obtained by means of the calculated direction in which the resultant force of tire generating forces acts on the wheels (step 116). Based on the obtained braking and driving forces and steering wheel of each of the wheels, these wheels are each controlled (step 118).