Abstract:
A metalized printable recording medium including a porous metallic reflective top layer, a porous ink-absorbing layer and a bottom supporting substrate. Method to form such printable recording medium and method to form printed images on the metalized printable recording medium are also disclosed.
Abstract:
A printed article with optically variable properties that includes a printable media on which a printed feature has been formed with an ink composition. Said ink composition contains metal oxide particles that have an average particle size in the range of about 3 to about 180 nm and that have a refractive index superior or equal to 1.2. The printable media contains a bottom supporting substrate, an ink-absorbing layer and a metallized top layer with pore diameters that are smaller than the size of the metal oxide particles, and the ink composition forms, onto the printable media, a printed feature that exhibits optically variable properties.
Abstract:
A print medium for ink-jet printing can comprise a base substrate; an ink-receiving layer comprising metal oxide particulates or semi-metal oxide particulates and a binder; and a gloss layer comprising colloidal silica and greater than 5 wt % of a copolymer of vinylpyrrolidone. The ink-receiving layer can be positioned between the substrate and the gloss layer.
Abstract:
A method of security printing can comprise the steps of printing a transparent ink onto a portion of a coated substrate resulting in printed region and an unprinted region, where the transparent ink is devoid of dyes, pigments, ceramics, metallics, and fluorescents; illuminating both the printed region and the unprinted region of the substrate, where the printed region scatters more light than the unprinted region creating a contrast; and detecting the contrast with a sensor that is sensitive to detecting light scattering differences between the printed region and the unprinted region.
Abstract:
An ink receiving substrate includes a substrate layer and organic modified silica dispensed on at least one surface of the support layer, wherein the organic modified silica includes inorganic particulates and silane coupling agents having guanidine or biguanidine functional groups.
Abstract:
The present invention is drawn to a method of treating silica in an aqueous environment. The method can comprise steps of dispersing silica particulates in an aqueous environment to form an aqueous dispersion; reversing the net charge of a surface of the silica particulates from negative to positive using a surface activating agent, thereby forming surface-activated silica particulates dispersed in the water; and contacting the surface-activated silica particulates with organosilane reagents to form reagent-modified and surface-activated silica particulates.
Abstract:
The present invention is drawn to a print medium and a method of preparing the same. The print medium can include a media substrate and a porous ink-receiving layer coated on the media substrate. The porous ink-receiving layer can include metal oxide or semi-metal oxide including a first portion of amine-functionalized particulates and a second portion of epoxy functionalized particulates, wherein at least a portion of the amine functionalized particulates are covalently coupled to at least a portion of the epoxy-functionalized particulates. A binder can optionally be present in the porous ink-receiving layer as well.
Abstract:
The present invention is drawn to a method of preparing a porous media substrate, comprising combining metal or semi-metal oxide particulates with a polymeric binder, wherein the metal or semi-metal oxide particulates are associated with at least one water soluble coating formulation additive. At least a portion of the water soluble coating formulation additive i) is in the form of unreacted additive, or ii) generates undesired electrolytes. Additional steps include removing at least a portion of the unreacted additive or undesired electrolytes, either before or after combining the metal or semi-metal oxide particulates with the polymeric binder, thereby forming a refined coating composition; and applying the refined coating composition to a media substrate to form an ink-receiving layer having a porous surface.
Abstract:
In one aspect of the present system and method, an inkjet recording medium includes a photobase layer, a layer of inorganic oxide dispensed on a first side of the photobase layer, and a layer of ink vehicle absorbing layer formed on a second side of the photobase layer.
Abstract:
Fusible print media, systems for preparing a fused ink-jet image, and methods of preparing a fused ink-jet image, are provided. One exemplary fusible print medium, among others, includes a substrate and an ink-receiving layer disposed on the substrate. The ink-receiving layer includes a first layer having ultrafine polymer particles and a second layer having hollow beads.