摘要:
When first and second near-field light-generating portions are irradiated with laser light or other energy rays, near-field light is generated at the tips of both the near-field light-generating portions. By means of the near-field light thus generated, a magnetic recording medium opposing the medium-opposing surface is heated, and the coercivity of the magnetic recording medium is lowered. Since at least a portion of the main magnetic pole is positioned within the spot region including the region between the first and second near-field light-generating portions, the tips of both the near-field light-generating portions and the main magnetic pole can be brought extremely close together, and high-density recording can be performed.
摘要:
An optical waveguide of the present invention is an optical waveguide in order to directly introduce light beams emitted from a light emitting element. In a core that is a waveguide through which light propagates, a concave part is formed that is a depression in a light incident end surface that is one side where light enters. Therefore, an optical waveguide is realized that can obtain a large optical coupling efficiency is possible by the operation of phase alignment in the concave part.
摘要:
A plasmon antenna of the present invention is used in a thermally assisted magnetic head that includes: a medium-facing surface set, parallel to an XY plane; a magnetic pole for writing, extending toward the medium-facing surface, and a plasmon antenna comprising a pair of small metal bodies irradiated with excitation light for near-field light generation propagating in a Z-axis direction. Respective corners of the small metal bodies are spaced apart opposite each other along a TE mode direction of the excitation light. A distance between the corners gives the shortest distance between the small metal bodies, and a distance from each corner to the leading end of the magnetic pole gives a shortest distance from the small metal bodies to the leading end.
摘要:
Provided is a near-field light generating element in which reduced is the propagation loss of excited surface plasmon that propagates to the near-field light generating end. The element comprises: a waveguide through which light for exciting surface plasmon propagates; and a plasmon antenna comprising a near-field light generating end and a propagation surface or edge. The propagation surface or edge extends to the near-field light generating end, and causes surface plasmon excited by the light to propagate thereon. Further, a portion of the side surface on the near-field light generating end side is opposed to the propagation surface or edge with a predetermined distance so as for the light to be coupled with the plasmon antenna in a surface plasmon mode. In this configuration, surface plasmon can propagates without significantly changing its wavenumber, which leads to a less propagation loss, and to an improved light use efficiency.
摘要:
A thermally assisted magnetic head has a medium-facing surface facing a magnetic recording medium; a near-field light generator disposed on a light exit face in the medium-facing surface; a magnetic recording element located adjacent to the near-field light generator; and a light emitting element disposed so that emitted light thereof reaches the near-field light generator; the near-field light generator is comprised of a cusp portion and a base portion; when λin represents a wavelength of the emitted light from the light emitting element immediately before the emitted light reaches the near-field light generator, an intensity of near-field light generated when the material forming the cusp portion is irradiated with the light of the wavelength λin is stronger than an intensity of near-field light generated when the material forming the base portion is irradiated with the light of the wavelength λin.
摘要:
Provided is a near-field light generating element in which as much amount as possible of waveguide light can be coupled with a plasmon antenna. The element comprises a light waveguide and a plasmon antenna comprising a surface or edge for propagating surface plasmon excited by waveguide light, extending to a near-field light generating end. A groove is formed in a waveguide side surface. And at least a portion of the surface or edge is embedded in the groove or located directly above the groove, being opposed to a wall or bottom surface of the groove with a predetermined distance, so as for waveguide light to be coupled with the plasmon antenna in surface plasmon mode. This configuration enables the surface or edge to be located at the position in which the surface or edge can be coupled with more amount of light, thereby to improve the light use efficiency.
摘要:
Provided is a plasmon antenna in which a near-field light having a sufficient intensity is generated only in a desired location. The plasmon antenna comprises an end surface on a side where a near-field light is generated; the end surface is flat and has a shape with at least three vertexes or rounded corners; and an end surface of the plasmon antenna which is opposite to the flat end surface and receives light, is inclined with respect to the flat end surface so as to become closer to the flat end surface toward one of the at least three vertexes or rounded corners. When the light-receiving end surface of the plasmon antenna is irradiated with the light, a near-field light having a sufficient intensity can be generated at only the vertex or rounded corner toward which the entire plasmon antenna becomes thinner.
摘要:
A near-field light generating device includes: a base having a top surface; a waveguide that allows laser light to propagate therethrough and is disposed above the top surface of the base; and a surface plasmon generating element that is disposed above the top surface of the base so as to adjoin the waveguide in a direction parallel to the top surface of the base. The waveguide has a side surface that faces the surface plasmon generating element. The surface plasmon generating element includes: a coupling part that is opposed to a part of the side surface of the waveguide with spacing therebetween and causes excitation of a surface plasmon by coupling with evanescent light occurring from the part of the side surface; and a near-field light generating part that generates near-field light based on the surface plasmon excited at the coupling part.
摘要:
A thermally assisted magnetic head includes: a slider having a medium-facing surface; and a surface-emitting semiconductor laser. The slider has: a slider substrate, on which part of the medium-facing surface is formed; and a magnetic head portion, on which another part of the medium-facing surface is formed, and which has a first surface in contact with a head stacking surface of the slider substrate and a second surface opposite the first surface. The magnetic head portion has: a main magnetic pole that generates a write magnetic field from an end face on the side of the medium-facing surface; an optical waveguide core extending along the first surface and having a light exit surface at the medium-facing surface; and a diffraction grating, which is provided in the optical waveguide core or further towards the second surface than the optical waveguide core, and the refractive index of which varies periodically along the direction in which the optical waveguide core extends. The surface-emitting semiconductor laser is provided opposing the second surface so that emission light from the surface-emitting semiconductor laser is incident onto the diffraction grating, and the diffraction grating causes at least part of emission light from the surface-emitting semiconductor laser to be optically coupled to the optical waveguide core.
摘要:
A method for manufacturing a thermally-assisted magnetic recording head is provided, in which joined are: a light source unit that includes a light source having a surface including a light-emission center on the joining surface side of a unit substrate; and a slider that includes an optical system having a light-receiving end surface reaching a back surface opposite to the opposed-to-medium surface. This method utilizes “semi-active alignment” that uses an alignment light, and comprises steps of: causing a light to enter the light source from a surface opposite to the light-emission center; detecting the light that has passed through the light source and is emitted from the light-emission center to align the light-emission center with the light-receiving end surface of the slider; and bonding the light source unit to the slider. This manufacturing method can achieve the alignment with a sufficiently high alignment accuracy in a short processing time.