Abstract:
This patent specification discloses a system for selecting an optimal audio codec algorithm to compress audio files that are wrapped within a Material eXchange Format (MXF) file. This patent specification melds the Material eXchange Format (MXF) for files together with matched-filter technology to provide a standards-compatible implementation for the selection and utilization of an optimal audio compression technology for a specific audio file included within an MXF file.
Abstract:
A magnetic tape cartridge secured with a blockchain is disclosed. The magnetic tape cartridge includes a solid-state cartridge memory, a reel of magnetic tape containing data, and a blockchain having a series of blocks. Each block in the blockchain contains a hash digest based on a portion of the data stored on the reel of magnetic tape and data pointers that link that portion of data stored on the reel of magnetic tape to each respective block. The blockchain blocks are stored in the solid-state cartridge memory. The portion of data upon which the hash digest is based is not redundantly stored in the solid-state cartridge memory with the block. The portion of data may be a logical volume, a logical partition, or all data stored on the reel of magnetic tape. The magnetic tape cartridge may also include a table containing pages stored within the solid-state cartridge memory with one of the pages being allocated for containing the blockchain.
Abstract:
A Material eXchange Format (MXF) digital file generated by a digital electronic processor is disclosed that includes a generic container for a media file. The MXF file also includes a SDTI-CP (Serial Data Transport Interface-Content Package) compatible system item. The SDTI-CP compatible system item has a media file metadata and a blockchain hash digest information formed from the media file. The blockchain hash digest information of the media file may be a blockchain hash digest used to error check the media file. Alternatively, the blockchain hash digest information of the media file may be a link to a cloud-based blockchain hash digest used to error check the media file.
Abstract:
A gas light source is disclosed where gas is contained within a graphene cylinder or graphene capsule. Electrodes extending into the graphene cylinder or capsule are stimulated by an electric voltage to emit light. Eight graphene cylinder light sources can be arranged into a seven-segment alpha-numeric display having a decimal point. Different gases produce different colors of light. Three gas light sources having different gases can be arranged into an RGB pixel. An array of RGB pixels can be formed into a display.
Abstract:
A gas light source is disclosed where gas is contained within a graphene cylinder or graphene capsule. Electrodes extending into the graphene cylinder or capsule are stimulated by an electric voltage to emit light. Eight graphene cylinder light sources can be arranged into a seven-segment alpha-numeric display having a decimal point. Different gases produce different colors of light. Three gas light sources having different gases can be arranged into an RGB pixel. An array of RGB pixels can be formed into a display.
Abstract:
A smart laser pointer is disclosed in this application that includes a laser coupled to a processor that can disable the laser from operating for a period of time (T) based on a disabling trigger. The smart laser pointer may also include an optical receiver coupled to the processor that detects received laser signals that are emitted from the laser after they are reflected off of a target and a memory storing position information threshold limits. The processor calculates measured position information based on the received laser signals detected by the optical receiver and compares them to the position information threshold limits. A disabling trigger occurs when the position information exceeds the position information threshold limits. The position information and threshold limits may include a distance or a velocity. These threshold limits are provided to ensure that the smart laser pointer cannot be used to target distant fast moving aerial targets such as commercial aircraft or helicopters, but still operate in legitimate contexts such as a conference room with a target such as a display screen that is stationary and close to the smart laser pointer. The smart laser pointer can include a unique identifier that is encoded on a signal emitted by the laser to enable a third party law enforcement agency to determine the exact laser pointer that is emitting the signal. The smart laser pointer may include a GPS chip to determine its exact geographic location. This geographic location information is encoded on a signal emitted by the laser to enable a third party law enforcement agency to determine the exact location of the laser pointer that is emitting the signal. The smart laser pen may include a blue tooth antenna to enable it to communicate with a mobile application on a mobile device. The mobile application is configured to receive text messages from law enforcement that instruct the mobile application to transmit a disabling signal to the smart laser pen to shut down the laser and prevent it from operating. The smart laser pen may also include an RF antenna that can receive a disabling command to shut down the laser and prevent it from operating. These features allow law enforcement to identify, locate, and shut down the operation of the smart laser pen, thereby enhancing aircraft safety.
Abstract:
A graphene coated optic fiber is disclosed. An optic fiber core is encapsulated within a graphene capsule. An optic fiber having cladding layer encapsulated within a graphene capsule is also disclosed. The graphene capsule may comprise a single layer of graphene, bi-layer of graphene, or multiple layers of graphene. An optical circuit is disclosed that transmits ultraviolet light across an optic fiber encapsulated with graphene.
Abstract:
A differential displacement sensor is disclosed that includes a pair of aligned stationary carbon nanostructures and a moveable carbon nanostructure. The moveable carbon nanostructure is configured to engage and move with respect to the pair of aligned stationary carbon nanostructures throughout a range of motion. Circuitry applies an excitation voltage across the pair of aligned stationary carbon nanostructures and the moveable carbon nanostructure to generate an output voltage proportional to a displacement of the moveable carbon nanostructure with respect to the pair of aligned stationary carbon nanostructures throughout the range of motion. Graphene sheets or carbon nanotubes may form the moveable carbon nanostructure or the pair of aligned stationary carbon nanostructures.
Abstract:
The present invention is a mood sensing and communicating system and method that includes a biometric sensor configured to sense biometric information from a person. A mood interpretive system is supported on a computing device or on a remote server. The mood interpretive system is in communication with the biometric sensor and is configured to assign a psychological or emotional mood state with the sensed biometric information. A communication system is supported on the computing device and is configured to communicate the assigned psychological mood state across an Internet to a web-site for positing on a web page. The method includes sensing biometric information from a user with a biometric sensor, associating a psychological mood state with the sensed biometric information with a mood interpretive module, and communicating the assigned psychological mood state to a web-site supported on a server across an Internet.
Abstract:
A magnetic storage medium is formed of magnetic nanoparticles that are encapsulated within nanotubes (e.g., carbon nanotubes), which are arranged in a substrate to facilitate the reading and writing of information by a read/write head. The substrate may be flexible or rigid. Information is stored on the magnetic nanoparticles via the read/write head of a storage device. These magnetic nanoparticles are arranged into data tracks to store information through encapsulation within the carbon nanotubes. As carbon nanotubes are bendable, the carbon nanotubes may be arranged on flexible or rigid substrates, such as a polymer tape or disk for flexible media, or a glass substrate for rigid disk. A polymer may assist holding the nano-particle filled carbon-tubes to the substrate. Magnetic fields may be applied to draw the carbon nanotubes into data tracks and orient the carbon nanotubes within the data tracks.