Abstract:
A fan nozzle for an aircraft gas turbine engine is comprised of a core engine cowl that is disposed within a fan cowl so that an air flow area is defined therebetween. The core engine cowl and fan cowl are disposed around a horizontal central plane. The fan cowl has a substantially circular shape and is formed of an upper substantially semi-circular portion having a first radius and a lower substantially semi-circular portion having a second radius. The core engine cowl has a substantially circular shape and is formed of an upper substantially semi-circular portion having a third radius and a lower substantially semi-circular portion having a third radius. The upper substantially semi-circular portion of the core engine cowl includes a left arcuate member and a right arcuate member. The second radius is less than the first radius and the third radius is less than the fourth radius.
Abstract:
An exemplary boundary layer ingestion engine includes a gas generator, a turbine fluidly connected to the gas generator, and a fan mechanically linked to the turbine via at least one shaft. The linkage is configured such that rotation of the turbine is translated to the fan. The boundary layer ingestion engine further includes an exhaust duct fluidly connected to an outlet of the turbine. The exhaust duct is positioned radially inward of the fan.
Abstract:
According to an example embodiment, a gas turbine engine assembly includes, among other things, a fan section including a fan, the fan including a plurality of fan blades, a diameter of the fan having a dimension D that is based on a dimension of the fan blades, each fan blade having a leading edge, and a forward most portion on the leading edges of the fan blades in a first reference plane, a geared architecture, a turbine section including a high pressure turbine and a low pressure turbine, the low pressure turbine driving the fan through the geared architecture, a nacelle surrounding the fan, the nacelle including an inlet portion forward of the fan, a forward edge on the inlet portion in a second reference plane, and a length of the inlet portion having a dimension L measured along an engine axis between the first reference plane and the second reference plane. A dimensional relationship of L/D is no more than 0.45.
Abstract:
A gas turbine engine comprises a main fan that delivers air into a bypass duct and into a core engine. A heat exchanger is positioned within the bypass duct and receives a fluid to be cooled from a component associated with the gas turbine engine. A heat exchanger fan is positioned to draw air across the heat exchanger and a control for the heat exchanger fan. The control is programmed to stop operation of the fan during certain conditions, and to drive the heat exchanger fan under other conditions. A method of forming a heat exchanger is also disclosed.
Abstract:
A gas turbine engine has an inner housing surrounding a compressor, a combustor, and a turbine, with an inlet leading into the compressor, and a cooling sleeve defined radially outwardly of the inlet to the compressor for receiving cooling air radially outward of the compressor inlet. The cooling sleeve extends along a length of the engine, and radially outwardly of the inner housing, with the cooling air in the cooling sleeve being ejected at a downstream end to mix with products of combustion downstream of the turbine. An aircraft is also disclosed.
Abstract:
A gas turbine engine comprises a main compressor section having a downstream most end, and more upstream locations. A turbine section has a high pressure turbine. A tap taps air from at least one of the more upstream locations in the compressor section, passes the tapped air through a heat exchanger and then to a cooling compressor. The cooling compressor compresses ng air downstream of the heat exchanger, and delivers air into the high pressure turbine. The heat exchanger has at least two passes, with one of the passes passing air radially outwardly, and a second of the passes returning the air radially inwardly to the compressor. An intercooling system for a gas turbine engine is also disclosed.
Abstract:
The present disclosure relates generally to an aircraft with counter-rotating pusher props powered by a gas turbine engine having a power turbine disposed substantially perpendicular to the compressor, combustor and turbine gas generator power core axis, as well as to the aircraft longitudinal axis.
Abstract:
A turbine engine such as a pusher fan engine is provided. This turbine engine includes a nacelle with a bypass flowpath. A fan rotor is configured to propel air out of the bypass flowpath. A plurality of guide vanes are configured to direct the air to the fan rotor.
Abstract:
A gas turbine engine assembly according to an example of the present disclosure includes, among other things, a fan including a plurality of fan blades, a diameter of the fan having a dimension D that is based on a dimension of the fan blades, each fan blade having a leading edge, a geared architecture configured to drive the fan, a turbine section configured to drive the geared architecture, a compressor section including a first compressor and a second compressor, and an inlet portion forward of the fan. A length of the inlet portion has a dimension L between a location of the leading edge of at least some of the fan blades and a forward edge on the inlet portion. A dimensional relationship of L/D is between about 0.2 and about 0.45.
Abstract translation:根据本公开的示例的燃气涡轮发动机组件包括除了别的以外的包括多个风扇叶片的风扇,具有基于风扇叶片的尺寸的尺寸D的风扇的直径,每个风扇 具有前缘的叶片,配置成驱动风扇的齿轮架构,构造成驱动齿轮架构的涡轮部分,包括第一压缩机和第二压缩机的压缩机部分以及风扇前部的入口部分。 入口部分的长度在至少一些风扇叶片的前缘的位置与入口部分的前边缘之间具有尺寸L。 L / D的尺寸关系为约0.2至约0.45。
Abstract:
A rotor for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a rotor disk rotatable about an axis and a gas path wall coupled to and radially outward of the rotor disk. The gas path wall bounds a radially inward portion of a gas path. A plurality of rotor spokes are radially intermediate the rotor disk and the gas path wall. The plurality of rotor spokes is circumferentially spaced to define a plurality of cooling channels intermediate the rotor disk and the gas path wall. A thermal barrier coating is disposed on a surface of at least one of the plurality of cooling channels. A method of cooling a rotor assembly is also disclosed.