CONTROL METHOD FOR ROBOT, COMPUTER-READABLE STORAGE MEDIUM AND ROBOT

    公开(公告)号:US20220203521A1

    公开(公告)日:2022-06-30

    申请号:US17561609

    申请日:2021-12-23

    Abstract: A control method for a robot includes: determining a desired zero moment point (ZMP) of the robot; obtaining a position of a left foot and a position of a right foot of the robot, and calculating desired support forces of the left foot and the right foot according to the desired ZMP, the positions of the left foot and the right foot; obtaining measured support forces of the left foot and the right foot, and calculating an amount of change in length of the left leg and an amount of change in length of the right leg according to the desired support forces of the left foot and the right foot, the measured support forces of the left foot and the right foot; and controlling the robot to walk according to the amount of change in length of the left leg and the right leg.

    Biped robot gait control method and biped robot

    公开(公告)号:US11230001B2

    公开(公告)日:2022-01-25

    申请号:US16572637

    申请日:2019-09-17

    Abstract: There are a biped robot gait control method and a biped robot, where the method includes: obtaining six-dimensional force information, and determining a motion state of two legs of the biped robot; calculating a ZMP position of each of two legs of the biped robot; determining a ZMP expected value of each of the two legs in real time; obtaining a compensation angle of an ankle joint of each of the two legs of the biped robot by inputting the ZMP position, a change rate of the ZMP position, the ZMP expected value, and a change rate of the ZMP expected value to an ankle joint smoothing controller so as to perform a close-loop ZMP tracking control on each of the two legs; adjusting a current angle of the ankle joint of each of the two legs of the biped robot in real time; and repeating the forgoing steps.

    GAIT PLANNING METHOD, COMPUTER-READABLE STORAGE MEDIUM AND ROBOT

    公开(公告)号:US20210181765A1

    公开(公告)日:2021-06-17

    申请号:US17114526

    申请日:2020-12-08

    Abstract: A computer-implemented gait planning method includes: determining a pitch angle between a foot of the robot and a support surface where the robot stands; determining a support point on a sole of the foot according to the pitch angle; calculating an ankle-foot position vector according to the support point, wherein the ankle-foot position vector is a position vector from an ankle of the robot to a support point on a sole of the foot; calculating a magnitude of change of an ankle position according to the pitch angle and the ankle-foot position vector; and obtaining a compensated ankle position by compensating the ankle position according to the magnitude of change of the ankle position.

    Jumping motion control method for biped robot, biped robot and computer-readable storage medium

    公开(公告)号:US12257725B2

    公开(公告)日:2025-03-25

    申请号:US17976904

    申请日:2022-10-31

    Abstract: A jumping motion control method for a biped robot includes: before feet of the biped robot leaves a support surface, estimating a motion trajectory of the biped robot that leaves the support surface according to a period of time when the biped robot stays or flips in the air; calculating a first motion angle of each joint of legs of the biped robot according to the motion trajectory and inverse kinematics; determining a constraint condition according to a motion type to which an action to be performed by the biped robot corresponds; optimizing the first motion angles according to the constraint condition to obtain a second motion angle of each joint of legs of the biped robot; and controlling a jumping motion of the biped robot according to the second motion angles.

    Robot control method, robot, and computer-readable storage medium

    公开(公告)号:US12233550B2

    公开(公告)日:2025-02-25

    申请号:US17994394

    申请日:2022-11-28

    Abstract: A robot control method, a robot, and a computer-readable storage medium are provided. The method includes: obtaining a linear motion model of a robot; determining a predicted state corresponding to each moment in a preset time period based on the linear motion model; determining an expected state corresponding to each moment in the preset time period; and determining a compensation value of a velocity of joint(s) at each moment from k-th moment to k+N−1-th moment based on the predicted state corresponding to each moment in the preset time period and the expected state corresponding to each moment in the preset time period, determining instruction parameter(s) at the k-th moment based on the compensation value of the velocity of the joint(s) at the k-th moment, and adjusting a position of each of the joint(s) of the robot according to the instruction parameter(s) at the k-th moment.

Patent Agency Ranking