Abstract:
Exemplary methods, apparatuses, and systems configure a first set of ports of a first host device and a second set of ports to be included within a first link aggregation group (LAG). The first and second host devices further configure, respectively, a first synchronization port that does not share a common LAG with the second host device and a second synchronization port that does not share a common LAG with the first host device. The first host device receives a first packet destined for a virtual machine running on the second host device, the first packet including source and destination information. The first host device determines from the source or destination information that the first packet is destined for a virtual machine running on another host device. In response, the first host device forwards the packet via the first synchronization port to the second host device.
Abstract:
A centralized namespace controller allocates addresses in a distributed cloud infrastructure on-demand. Upon receiving a request to allocate addresses for a network to be provisioned by a cloud computing system included in the distributed cloud infrastructure, the centralized namespace controller allocates a network address that is unique within the distributed cloud infrastructure. Further, the centralized namespace controller allocates a range of virtual network interface cards (NIC) addresses that are unique within the network. The centralized namespace controller then allocates addresses from the range of virtual NIC addresses on an as-requested basis—when a virtual NIC is being created by the first cloud computing system on the network. Advantageously, by centralizing the allocation of addresses and dedicating independent NIC address ranges to different cloud computing systems, the centralized namespace controller enables stretched L2 networks between cloud computing systems while preventing duplicated addresses on the stretched networks.
Abstract:
The disclosure herein describes a system, which provides uniform access to a gateway in an extended virtualized layer-2 network. During operation, the system identifies a media access control (MAC) address, which is associated with a respective gateway in the extended virtualized layer-2 network, in a layer-2 header of a data frame. This MAC address is specific to the extended virtualized layer-2 network (e.g., for a different extended virtualized layer-2 network, a different MAC address is associated with a respective gateway). The system modifies the layer-2 header by swapping the MAC address with another MAC address, which uniquely identifies a gateway in the extended virtualized layer-2 network, in the layer-2 header and forwards the frame with the modified header to the gateway.