Abstract:
A segmented nozzle ring is disclosed having a throat area between neighboring vanes that is the same for each segment which is achieved by rotation (i.e., opening or closing of the throat area) of the individual vane compounds belonging to the different segments. The resulting uniform throat area leads to a uniform exit flow angle of the nozzle and a uniform inlet flow angle of the rotor. As a result, high-cycle fatigue excitations of the rotor caused by the non-uniform flow can be eliminated, the thermodynamic efficiency of the turbine stage can be improved, and the nozzle ring need not be arranged in a fixed position relative to the gas inlet casing.
Abstract:
An exemplary nozzle ring has two fastening rings and a plurality of guide vanes, wherein holes are provided in one of the fastening rings for accommodating pins of the guide vanes, and openings are provided in the other fastening ring for accommodating positioning aids on the guide vanes.
Abstract:
A compressor casing includes a casing insert with a flexible element in the force flux between the insert wall contour and the outer compressor casing. The flexible element is assembled from a support ring and ribs, wherein the ribs axially in front of the support ring and the ribs axially behind the support ring are arranged in an offset manner in relation to each other. Due to the arrangement of the ribs in an offset manner, the axial force flux between the insert wall contour and the outer compressor casing is deflected twice, and an axially compliant flexible construction is achieved.
Abstract:
A guide device with adjustable guide vanes is provided with a drive for the adjustable guide vanes, in which a cylindrical driving pin and an adjusting lever are provided each with one surface pair which are matched to one another and which slide on one another in operation when the guide vanes are being adjusted. To adjust the guide vanes, the adjusting ring is moved, by which the driving pin attached to the adjusting ring slides in an elongated groove of the adjusting lever and applies a force to the adjusting lever. This approach yields an economical and durable structure which is easy to install. This results in surface support with the corresponding low compressive loads per unit area and consequently greatly reduced wear.
Abstract:
The exhaust-gas turbine comprises a turbine casing, a shaft rotatably mounted in a bearing housing, a turbine wheel arranged on the shaft, and a heat-protection wall, the heat-protection wall defining with the turbine casing an inflow passage leading to the turbine wheel. The heat-protection wall has two seatings, the first seating resting on the bearing housing and the second seating resting on the turbine casing. If the heat-protection wall becomes hot, the two seatings are pressed against the bearing housing and the turbine casing. The turbine casing is pressed outward in the radial direction. Centering of the heat-protection wall and thus also of the turbine casing is ensured by the radially inner seating of the heat-protection wall.
Abstract:
The piston ring sealing points of a sealing apparatus between the rotor and the housing of a continuous-flow machine each have a piston ring, a cylindrical contact surface, which is directed radially inward, on the housing, as well as an axial stop on the rotor. In this case, the piston ring of the outer piston ring sealing point has a larger external radius and a smaller internal radius than the piston ring of the inner piston ring sealing point. At the same time, the outer piston ring sealing point has a smaller internal radius than the inner piston ring sealing point. Because of the V-shaped arrangement concept, there is no need for a steel ring, shrunk onto the rotor, between the piston ring sealing points.
Abstract:
The exhaust-gas turbine comprises a turbine casing, a shaft rotatably mounted in a bearing housing, a turbine wheel arranged on the shaft, and a heat-protection wall, the heat-protection wall defining with the turbine casing an inflow passage leading to the turbine wheel. The heat-protection wall has two seatings, the first seating resting on the bearing housing and the second seating resting on the turbine casing. If the heat-protection wall becomes hot, the two seatings are pressed against the bearing housing and the turbine casing. The turbine casing is pressed outward in the radial direction. Centering of the heat-protection wall and thus also of the turbine casing is ensured by the radially inner seating of the heat-protection wall.
Abstract:
The exhaust-gas turbine comprises a turbine casing, a shaft rotatably mounted in a bearing housing, a turbine wheel arranged on the shaft, and a heat-protection wall, the heat-protection wall defining with the turbine casing an inflow passage leading to the turbine wheel. The heat-protection wall has two seatings, the first seating resting on the bearing housing and the second seating resting on the turbine casing.If the heat-protection wall becomes hot, the two seatings are pressed against the bearing housing and the turbine casing. The turbine casing is pressed outward in the radial direction. Centering of the heat-protection wall and thus also of the turbine casing is ensured by the radially inner seating of the heat-protection wall.
Abstract:
In a turbocharger (1), comprising a turbine (2) and a compressor (3) connected to the turbine (2), the turbine (2) contains a turbine wheel (4) and the compressor (3) contains a compressor wheel (7) which are connected to one another by means of a shaft (10) and are arranged in a housing (5, 9, 16). During operation, if the compressor wheel (7) separates from the shaft (10), an axial force acts on the turbine wheel (4) and the shaft (10) connected thereto.A means (22, 25) for axially locking the shaft and the turbine wheel connected thereto in the housing (5, 9, 16) is arranged on the shaft (10) connected to the turbine wheel (4).
Abstract:
A vibration suppressor and a vibration damper are configured in a system consisting of an internal combustion engine and an exhaust-gas turbo charger. The vibration suppressor and vibration damper are secured to an exposed place on the system which is subjected to strong vibrations. As the vibrations are the strongest in said area, the vibration-reducing means can be used to a maximum. The system consisting of the internal combustion engine and the exhaust-gas charger is improved in such a manner that the internal combustion engine can be operated in all of the rotational speed ranges without reducing the service life of individual components or the entire system.