Abstract:
A single-layer capacitive touch-control panel apparatus is provided. The single-layer capacitive touch-control panel apparatus includes a touch-control substrate and a touch-control chip. The touch-control substrate has M touch areas, and each touch area of the plurality of the touch areas includes an axial body and N electrodes. The axial body is electrically connected to the touch-control chip through a first conductive line. N electrodes are disposed on the axial body and are electrically connected to the touch-control chip through a plurality of second conductive lines. The touch-control chip is disposed on the touch-control substrate of single-layer, wherein MN are positive integer.
Abstract:
The present invention provides a level shift circuit capable of operating at low input voltage. The level shift circuit comprises: a first switch element coupled to a first output terminal, a second switch element coupled to a second output terminal, a third switch element coupled to the second output terminal and the first output terminal, a fourth switch element coupled to the first output terminal and the second output terminal, a first current source module for letting a current passing through the third switch element smaller than a current passing through the first switch element when the first switch element and the third switch element are conducted, and a second current source module for let a current passing through the fourth switch element smaller than a current passing through the second switch element when the second switch element and the fourth switch element are conducted.
Abstract:
A voltage level clamping circuit which can be implemented in an integrated circuit (IC) and a high-speed comparator module, wherein the IC includes a parasitic diode coupled between a first voltage source and a second voltage source. The voltage level clamping circuit includes a switch module coupled between the first voltage source and the second voltage source and a comparator module having an output terminal coupled to the switch module, a first input terminal coupled to the first voltage source, and a second input terminal coupled to the second voltage source, for comparing a voltage level of the first voltage source with a voltage level of the second voltage source to generate an output signal, and transmitting the output signal to the switch module to control a conducting state of the switch module to selectively clamp the voltage level of the second voltage source.
Abstract:
The present invention discloses a voltage adjusting circuit including a first switch element, a second switch element, a third switch element, a fourth switch element, a fifth switch element, and a sixth switch element. At first, the voltage adjusting circuit performs a discharging operation on an output voltage toward a reference voltage source, and then when the output voltage level is approaching a voltage level of an input voltage source, the voltage adjusting circuit will perform the discharging operation on the output voltage toward the input voltage source instead, and thus the voltage adjusting circuit can avoid affecting the input voltage source when performing the discharging operation. In addition, the voltage adjusting circuit does not need a digital counter to perform the above dual-phase type discharging operation or multi-phase type discharging operation, and therefore cost of the voltage adjusting circuit is lower, and the voltage adjusting circuit has good accuracy.
Abstract:
An amplifying circuit includes an operational amplifier, a pull-up circuit and a pull-down circuit. The operational amplifier generates a first pull-up signal, a first pull-down signal and an output signal, wherein the phases of the first pull-up signal and the first pull-down signal are out of phase with the output signal. The pull-up circuit includes a first controlling module for outputting a second pull-up signal according to the first pull-up signal, and a first adjusting module for adjusting the output signal according to the second pull-up signal. The pull-down circuit includes a second controlling module for outputting a second pull-down signal according to the first pull-down signal, and a second adjusting module for adjusting the output signal according to the second pull-down signal.