摘要:
The invention relates to a method, an apparatus and a computer program for transferring scan geometry between a first region and a second region, similar to the first region. In the method according to the invention the first region and the second region are being identified (4), preferably in the overview image, followed by determination (6) of the first scan geometry corresponding to the first region. Then, the first scan geometry is being transferred into the second scan geometry corresponding to the second region, whereby information on geometrical correspondence between the first region and the second region is used. Preferably, the step of transferring comprises establishing corresponding mappings between similar regions and their respective scan geometries.
摘要:
Hybrid circuitry (40, 40′, 40″) for operatively coupling a radio frequency drive signal (70) with a quadrature coil (30) is configurable in one of at least two coil modes of a group consisting of: (i) a linear I channel mode in which an I channel input port (42) is driven without driving a Q channel input port (44); (ii) a linear Q channel mode in which the Q channel input port is driven without driving the I channel input port; (iii) a quadrature mode in which both the I and Q channel input ports are driven with a selected positive phase difference; and (iv) an anti quadrature mode in which both the I and Q channel input ports are driven with a selected negative phase difference. A temporal sequence of the at least two coil modes may be determined and employed to compensate for B inhomogeneity.
摘要:
The present application discloses a cordless charger for a wearable patient monitor. When a patient (10) is diagnosed with a heart condition, or suspected heart condition, they are prescribed a patient monitoring system. The system includes monitors (12) that the patient (10) wears to collect the data of interest. Each day, the patient swaps the monitor (12) he or she is wearing with a fully charged monitor (12) from a cordless charger (14). In this manner, a fresh monitor (12) is always available for monitoring the patient (10). The cordless charger (14) includes a battery (50) that powers the processes of the charger and recharges batteries (34) of the monitors (12). Data from the monitors can be either offloaded to the charger memory (70), or transmitted to a remote database (32) via the patient's Bluetooth enabled cellular phone (30) or other like device.
摘要:
The invention relates to a device for magnetic resonance imaging of a body (7). The device (1) comprises means (2) for establishing a substantially homogeneous main magnetic field in the examination volume, means (3, 4, 5) for generating switched magnetic field gradients superimposed upon the main magnetic field, means (6) for radiating RF pulses towards the body (7), control means (12) for controlling the generation of the magnetic field gradients and the RF pulses, means (10) for receiving and sampling magnetic resonance signals, and reconstruction means (14) for forming MR images from the signal samples. In accordance with the invention, the device is arranged to a) generate a series of MR echo signals (20) by subjecting at least a portion of the body (7) to an MR imaging sequence of RF pulses and switched magnetic field gradients, b) acquire the MR echo signals for reconstructing an MR image data set (21) therefrom, c) calculate a gradient map (22) by computing echo shift parameters (SPx, SPy, SPz) from subsets of the MR image data set, the echo shift parameters (SPx, SPy, SPz) indicating magnetic field gradient induced shifts of the echo positions in k-space, wherein each subset comprises a number (n) of spatially adjacent pixel or voxel values of the MR image data set (21).
摘要:
A security system for a hierarchical network (10) includes L hierarchical levels each corresponding to a security domain level (16), and a plurality of local network nodes (A, B, . . . , Z). A keying material generator (24) generates a set (30) of correlated keying material for each network node. Each set (30) of keying material is composed of L sub-sets (32) of keying material one for each security domain level (16). A set up server (34) distributes the generated sets (30) of keying material to each network node (A, B, . . . , Z) to enable the network nodes (A, B, . . . , Z) to communicated with one another at a security domain of a hierarchical level k by a use of a corresponding sub-set (32) of the security keying material.
摘要:
An imaging subject (16) is disposed in an examination region (12) for examination. A cover (18) is disposed around the examination region (12). Magnetic field gradient coils (30) impose selected magnetic field gradients on a main magnetic field (B0) within the examination region (12). A radio frequency (RF) coil (36) generates radio frequency excitation pulses in the examination region (12), the radio frequency coil (36) including a plurality of coil elements (381, 382, 383) disposed on the cover (18) distally from the examination region (12). A radio frequency (RF) screen (40) associated with the coil elements (381, 382, 383) shields the coil elements (381, 382, 383) and is disposed about the gradient coils (30) such that the coil elements (381, 382, 383) are mechanically decoupled from the RF screen (40) and substantially acoustically isolated from the RF screen (40) and gradient coils (30).
摘要:
A reconstruction method for an image of an object, the reconstruction method comprising receiving a first projection data set representing information about said object, receiving a second projection data set representing information about said object, reconstructing a first image of said object using the first projection data set, reconstructing a second image of said object using the second projection data set, performing a registration between the first image and the second image, and fusing the first image and the second image to said image of said object, wherein the first projecting data set and the second projecting data set are achieved by using a single radiation type.
摘要:
A tomographic apparatus (10) includes at least two x-ray sources (14) that rotate about and alternately emit radiation into an imaging region (22). The at least two x-ray sources (14) emit radiation from a first set of angular positions during a first data acquisition cycle and from a different set of angular positions during a subsequent data acquisition cycle. At least two sets of detectors (24) detect primary radiation emitted by a corresponding one of the at least two x-ray sources (14) and produce data representative of the detected radiation. An interleaver (32) interleaves the data associated with the first and the subsequent data acquisition cycles for each of the at least two x-ray sources (14).
摘要:
In a magnetic resonance data acquisition method, magnetic resonance is excited (72, 74) in an observed nuclear species. Magnetic resonance data of the observed nuclear species are acquired (76). A plurality of different broadband decoupling radio frequency pulses (80) configured to decouple a coupled nuclear species from the observed nuclear species are applied. Each broadband decoupling radio frequency pulse has a different or randomized or pseudorandomized amplitude (110) as a function of time. Each broadband decoupling radio frequency pulse has about the same peak power, pulse duration, and frequency spread. The differences between the broadband decoupling radio frequency pulses are effective to substantially suppress cycling sidebands.
摘要:
A system (10) automatically configures and sets up an ad hoc wireless medical network (40). Wireless peer devices (221, 222, . . . , 22n) each includes a peer BCC interface module (241, 242, . . . , 24n) for authenticating a patient and transmitting device identification of a selected peer device (221, 222, . . . , 22n), and a short-range network interface module (301, 302, . . . , 30n) for setting up communication connection between the peer devices (221, 222, . . . , 22n). An active identification device (28), which is linked to the patient (14), authenticates each selected peer device (221, 222, . . . , 22n) and automatically associates each selected peer device (221, 222, . . . , 22n) with the patient (14). A patient BCC interface module (36), coupled with the patient (14), transmits network parameters from the active identification device (28) to the peer devices (221, 222, . . . , 22n).