Abstract:
A connectorized optical chip assembly connectable to an external optical fiber having a fiber connector is provided. The connectorized optical chip assembly includes a substrate, an optical chip having an on-chip optical waveguide and a connectorized interface. The connectorized interface includes an optical coupling element mounted in optical alignment with the on-chip optical waveguide. The connectorized interface includes a chip connector engaging the optical coupling element and configured for mating with the fiber connector of the external optical fiber, so as to provide an optical coupling of light between the optical coupling element and the external optical fiber. The connectorized optical chip assembly also includes a mechanical support structure supporting the connectorized interface onto the substrate. Preferably, the components of the connectorized optical assembly are made of materials heat resistant to temperatures used to melt solder in surface mount processes.
Abstract:
A low white frequency noise tunable semiconductor laser source is presented. The laser source includes a single-mode semiconductor laser assembly which generates a laser beam having a tunable frequency over a spectral range of interest. An optical filter is provided in the path of the laser beam. The optical filter has multiple spectral features distributed over the entire spectral range of interest. Each spectral feature has a narrow spectral range. A locking mechanism is further provided and is controllable for locking a spectral alignment between the frequency of the laser beam and any selected one of the spectral features of the optical filter.
Abstract:
A method is provided for measuring a factor, called herein the single-port rejection ratio (SPRR), characterizing a balanced detection device. The SPRR is representative of the ratio of the weak differential output current measured under illumination of a single-port of the balanced detection device to the strong measurable differential output current obtained under dual-port illumination. An apparatus for measuring the SPRR is also provided.
Abstract:
A colorless tunable dispersion compensator for compensating for chromatic dispersion in a multi-channel light signal is provided. The compensator includes a multi-channel Bragg grating extending along a waveguide. Dispersion tuning means, such as a temperature gradient inducing device, are provided for tuning the dispersion characteristics of the wavelength channels. Wavelength shifting means are also provided for uniformly shifting the central wavelengths of all channels independently of their dispersion characteristics. A uniform temperature inducing or strain applying assembly can be used for this purpose.
Abstract:
A narrow linewidth semiconductor laser device has a semiconductor laser and a low noise current source operatively connected to the laser with the current source being adapted to prevent degradation of the laser's frequency noise spectrum. An optical frequency discriminator provides an error signal representative of the laser's optical frequency and a control circuit has a feedback network that provides a frequency feedback signal that is adapted to the frequency noise spectrum of the frequency discriminator and to the laser's frequency noise spectrum and tuning response. The control circuit also has a sequencer to automatically enable frequency locking of the laser on the frequency reference of the optical frequency discriminator. An enclosure encloses the frequency discriminator to isolate the frequency discriminator from external perturbations. The device provides an improved sub-kHz linewidth and a high coherence while being compact, lightweight and highly reliable, as well as being automatically operated.
Abstract:
A method for designing an index profile suitable for encoding into a phase mask for manufacturing a complex optical grating is provided. The optical grating corresponds to a target index profile defining a target spectral response. A modified index profile is set equal to the target index profile and expressed as a function of an apodization and phase profiles. The modified index profile is iteratively further modified in order to provide the index profile suitable for encoding in the phase mask. This process creates side bands outside of a spectral region of interest, while maintaining the target spectral response within the spectral region of interest.
Abstract:
A method for manufacturing a complex multi-channel optical grating using a phase mask is presented. A plurality of sub-gratings is designed, each having an individual spectral response designed to produce one of the channels of the multi-channel grating. The target profile of the grating is determined based on the combination of the index profiles of the individual sub-gratings, the target index profile defining a target spectral response of the multi-channel grating. A modified index profile having a smooth apodization profile but providing the same spectral response as the target index profile, at least within a spectral region of interest, is determined and encoded into the phase mask. The phase mask is then used to photoinduce the grating in a photosensitive medium.
Abstract:
A method for aligning the spectral responses of two comb-like optical filters is provided. This method does not necessitate the use of spectrally-resolved equipment, as it uses the optical power correlation profile of a broadband light signal representative of the combined spectral responses of the two filters. In one embodiment, the power correlation profile is compared to a pre-stored profile. A tuning method for tuning two filters using this alignment method is also provided. The two filters are first relaxed to an unstretched position, and the second filter is stretched and aligned with the first. The first filter is also stretched and aligned with the other. Both filters are then stretched at a calibrated value.
Abstract:
There is provided a narrow linewidth semiconductor laser device comprising a semiconductor laser and a low noise current source operatively connected to the laser for supplying current thereto, the current source being particularly adapted to prevent a significant degradation of the frequency noise spectrum of the laser. The laser device also has an optical frequency discriminator providing an error signal representative of the optical frequency of the laser. The laser device also has control means having a feedback network for providing a frequency feedback signal. The feedback network is particularly adapted to the frequency noise spectrum of the frequency discriminator, the frequency noise spectrum of the laser and the tuning response of the laser. The control means is also provided with sequencing means for allowing to automatically enable frequency locking of the laser on the frequency reference of the optical frequency discriminator. The laser device is provided with an enclosure for enclosing the frequency discriminator to isolate the frequency discriminator from external perturbations. Such an arrangement is particularly advantageous since it allows to provide an improved sub-kHz linewidth and a high coherence while being compact, lightweight and highly reliable. Moreover, the narrow linewidth semiconductor laser device of the present invention can advantageously be automatically operated.
Abstract:
An apodized fiber Bragg grating, and a phase mask, method and system for making such a grating are disclosed. The refractive index profile of the grating has a periodic apodization phase component which is designed so that the grating fringes reflecting light in a spectral region of interest are apodized, by generating spurious reflection features outside of this spectral region of interest. Apodization is therefore provided through a phase variation of the grating as opposed to an amplitude variation. The phase component is added to the profile of the phase mask grating corrugations to obtain the phase-apodized grating.