Abstract:
A jet boat including a hull including a keel extending in a fore and aft direction of the jet boat, at least one jet propulsion nozzle mounted to a rear of the hull, and an articulating keel attached at the rear of the hull, the articulating keel arranged to pivot about a pivot axis extending vertically or substantially vertically. A bottom surface of the articulating keel does not extend below a bottom surface of the keel when the articulating keel is parallel or substantially parallel to the fore and aft direction of the jet boat.
Abstract:
In one example, a watercraft is provided that includes a body. The body has a hull and a ramp that slopes downwardly toward a back of the hull. Additionally, a reverse chine geometry is incorporated in a portion of the bottom of the hull. Finally, one or more projections extend downward from the bottom of the hull.
Abstract:
A watercraft hull has a flat pad keel whose beam tapers towards the bow and at the transom is 15% to 25% of the beam at its chines. The hull is symmetric about its centerline, has a fine entry bow, and a pair of hard chines. Between the pad keel and the chines the hull has at least one pair of generally flat longitudinal steps having approximately 0 degrees of deadrise forming planing surfaces symmetrically about the hull centerline. The hull also includes at least one pair of ultra high deadrise panels, outboard of and adjacent to the pad keel, symmetrically about the hull centerline, and extending to the flat planing panels above them. The ultra high deadrise panels have a deadrise approximately 50 degrees. Additional flat planing surface structures having approximately 0° deadrise are installed longitudinally on the hull between the pad keel and the hard chine.
Abstract:
Compound hull for electric-powered, cruiser-type vessels having a unique hard chine displacement wave form hull that recycles wave energy to minimize drag and results in lowered power requirements for long-period cruising at displacement hull speeds. The inventive hull comprises: 1) an upper hull portion having a flat bottom square transom, the bottom curve of the hull sides of which match the vessel's wave form at hull speed, mated to, 2) a bottom hull portion formed as a double ended V-bottom lower displacement hull having a constant varying dead-rise. The inventive hull requires up to 50% less power than conventional cruisers of other hull shapes, at displacement hull speed.
Abstract:
The forced air cavity and control system for watercraft provides a source of compressed air against the hull, the compressed air being distributed via a pivotally adjustable air scoop mounted proximate the front of the boat, to which is connected a series of conduits (air passageways) leading downwardly from the housing. The conduits exit at openings in a V-shaped step in the hull of the watercraft to emit high pressure air against the hull to thereby reduce friction caused by hull contact with the water. A hydraulic ram operably connected to the air scoop provides a means of pivotal adjustment. A plurality of ice runners is provided on the bottom of the watercraft to increase stability of control under reduced water friction conditions.
Abstract:
The forced air cavity and control system for watercraft provides a source of compressed air against the hull, the compressed air being distributed via a pivotally adjustable air scoop mounted proximate the front of the boat, to which is connected a series of conduits (air passageways) leading downwardly from the housing. The conduits exit at openings in a V-shaped step in the hull of the watercraft to emit high pressure air against the hull to thereby reduce friction caused by hull contact with the water. A hydraulic ram operably connected to the air scoop provides a means of pivotal adjustment. A plurality of ice runners is provided on the bottom of the watercraft to increase stability of control under reduced water friction conditions.
Abstract:
An entrapment tunnel watercraft vessel having three hulls consists of a main hull and two amas arranged outboard of the main hull with the keels of the three hulls being parallel. The main hull is a narrow, vee hull with variable, rearwardly decreasing deadrise. The amas have very fine bows and narrow, asymmetric deep-V hulls, with nearly vertical slab outboard sides above their keels and variable reverse deadrise on their inboard sides with the reverse deadrise angles decreasing from bow to stem. The tunnels on each side of the main hull are formed by three distinct surfaces, the sides of the main hull above its chine, the reverse deadrise inboard sides of each ama upward from their keels and a ceiling surface transversely spanning the aforementioned sides and having rearwardly increasing deadrise and rearwardly decreasing width. The tunnel ceilings slopes down from the bow to a section aft of midship where the ceiling height above the keel remains essentially constant. At speed the craft generates substantial amounts of lift and positive trim, thereby reducing the forward wetted length of the immersed tunnel ceiling and the apex of the ceiling is approximately at the craft dynamic waterline. As a result the watercraft vessel has improved seakeeping, stability and weight carrying ability.
Abstract:
Boat hulls or assemblies have sequences of groups of downward-facing sections such as planing sections. A sequence includes a lowermost group and supplemental groups above it. Each group could, for example, be a pair, and the pairs could be port-starboard symmetrical. The lower surface is shaped so that the boat hull, in a series of speed ranges, planes on successively lower groups, planing on the lowermost group in the highest range. The trim angle can be between 3.0° and 6.0° in a speed range. The boat hull can be structured so that, when planing on one of the groups, the next higher group dries out. For example, each pair of sections can have an outward angle not smaller than the next inward pair's. The lowermost group can have a maximum width approximately equal to an ideal beam width for a set of displacement characteristics and its target maximum speed.
Abstract:
A hull of a ship has a front hull part (10) with a deep V-shape contour having an angle gradually increasing from fore to aft to become 180 degrees in a rear hull part (14) with chines extending according to a side hull contour. The chines, starting from the stern, have a lower edge which is situated under the waterline (20) astern of the midship cross section and then raises such that they are radiused with the front hull part (10).
Abstract:
A marine vessel that planes over the water in a straight ahead mode and has a V-shaped bow configuration, two lateral rails, a water jet intake aft of the bow, and a water jet discharge through the transom above the water line. The vessel's tri-point contact with the water at high speeds permits sled-like movement with minimal wet area under the hull along the center aft of the water jet intake. It moves fast through the water, is stable, moves smoothly and silently through the water, makes little wake, and makes hard turns without loss of velocity. At idle and slow speed it is low in the water, while at high speed it rides high on the water with only the bow and rear rails in contact with the water. Vessel size and scale are not limiting factors. Applications include, but are not limited to, military, recreational, and sporting uses.