Abstract:
A method for adaptively learning is described that effectively and efficiently uses large amounts of data. Specifically, in one example, a scheme is described for determining whether to use data to adaptively learn parameters, or whether to discard the data. In this way, convergent data learning is possible.
Abstract:
A method and a device for controlling an internal combustion engine. An actuator serves to influence the quantity of exhaust gas recirculated. A loop controller preselects the quantity of exhaust gas to be recirculated on the basis of a setpoint and an actual value which characterizes the quantity of exhaust gas recirculated. A first measured value is determined in a first position (open) of the actuator, and a second measured value is determined in a second position (closed) of the actuator, with the actual value or a correction value being preselectable on the basis of the difference between the two measured values.
Abstract:
A method and apparatus for controlling the air-fuel ratio in an internal combustion engine wherein, when the operating condition of the internal combustion engine has shifted between learning zones, a learning control updates a correction value after the shift is made in accordance with a stand-by function of a control unit to reduce the occurrence of mislearning, perform the correction value updating learning control efficiently and effect the purification of exhaust gases. In the air-fuel ratio controlling method for the internal combustion engine, when the operating condition of the engine has shifted between learning zones, a learning control updates a correction value in accordance with a stand-by function. In the air-fuel ratio controlling apparatus for the internal combustion engine, a stand-by function is added to the control unit so that, when the operating condition of the engine has shifted between learning zones, a learning control for updating a correction value after the shift is conducted in a delayed manner in accordance with a preset wait count. Further, a stand-by function is added to the control unit so that the correction value updates learning control after the shift is performed, in a delayed manner in accordance with a preset wait time.
Abstract:
A learning control system for controlling an air fuel ratio an engine employs a slowly updated second learning control variable in addition to a normally updated first learning control variable in order to utilize the learning function sufficiently even when a deviation of the air fuel ratio exceeds the learning range of the first variable. The control system according to an illustrated embodiment of the invention identifies a current engine operating area among a plurality of such areas, in accordance with a sensed engine operating condition, obtains a value of the first learning variable corresponding to the identified operating area, and a value of the second learning variable, determines a learning quantity which is a sum of the first and second learning variables by using the obtained values, and uses this learning quantity for determining a desired fuel supply quantity. The second learning variable is updated slowly whereas the first learning variable is updated in a sensitive and speedy manner.
Abstract:
A system and method for learning and controlling an air/fuel mixture ratio for an internal combustion engine are disclosed which can achieve the compatibility of both learning convergence characteristic and accuracy of learning and which can prevent a stepwise change in correction coefficients to a basic fuel supply quantity when the present engine driving condition makes the present one of the driving conditions to the other one of the driving conditions. In a preferred embodiment of the air/fuel mixture ratio learning and controlling system, a plurality of learning maps in which the whole driving region is divided into 16 regions and is divided into 258 regions. The learnings of the air/fuel mixture ratio learning correction coefficients KBLRC1 for the 16 driving regions on the first learning map are followed by those of the other air/fuel mixture ratio learning correction coefficients KBLRC2 for the 256 driving regions on the second learning map. After loads of corrections on the learning correction coefficients KBLRC1 are transferred to those of the learning correction coefficients KBLRC2 for the 256 driving regions, the system reads a modified learning correction coefficient KBLRC2 derived through an interpolation between the 256 region learning map. A final learning correction coefficient KBLRC is set using the read correction coefficient KBLRC2 and the learning correction coefficient KBLRC0 applied to the whole driving region so as to correct the basic fuel supply quantity.
Abstract:
An air/fuel mixture ratio learning control system for an internal combustion engine using a mixed fuel employs a learnt correction coefficient which is used both in a FEEDBACK mode air/fuel ratio control and in an OPEN LOOP mode air/fuel ratio control. The learnt correction coefficient is derived based on a FEEDBACK air/fuel ratio dependent correction coefficient per one of preselected engine driving ranges and per one of preselected concentration ranges of one fuel component contained in the mixed fuel. The learnt correction coefficient is cyclically derived in a preselected stable engine driving condition during the FEEDBACK mode air/fuel ratio control for updating a previously derived and stored one to minimize a deviation of the FEEDBACK correction coefficient from a reference value. The control system performs the FEEDBACK mode air/fuel ratio control with the FEEDBACK correction coefficient and the learnt correction coefficient, while the control system performs the OPEN LOOP mode air/fuel ratio control with the learnt correction coefficient.
Abstract:
In a steady operating condition of an engine, the fuel supply quantity is changed compulsorily and step-by-step, and in compliance with changing conditions of the fuel quantity sucked into cylinders after such correction of the fuel supply quantity, a fuel adhesion ratio and an evaporation ratio as the decisive parameters for a wall flow quantity of fuel are learned separately in each operational region, and using the learned results the fuel supply quantity in transitional operation is corrected.
Abstract:
A method for recalibration of parametric relationships used in exhaust gas recirculation EGR control. When such recirculation would typically be inactive, relationships between parameters are measured, such relationships being normally measurable only with inactive EGR. New information from those measurements is combined with information from previous calibrations to provide update information necessary for subsequent EGR control.
Abstract:
There is disclosed an air-fuel ratio control system for an automotive engine having a fuel injection system including injectors, an intake air quantity measuring system including an intake air quantity sensor, and a canister purge control system corresponding to a necessity. The air-fuel ratio control system comprises a learning designation circuit for selecting a learning region for the measuring system or the injection system, a measuring system learning circuit for learning a correction amount of the measuring system responsive to the selection of the designation circuit, an injection system learning circuit for learning a correction amount of the injection system responsive to the selection, and a fuel quantity setting circuit for setting the quantity in dependency on an engine speed and an intake air quantity and for setting an actual fuel injection quantity by correcting the basic fuel injection quantity with the both correction amount.
Abstract:
An apparatus for learning and controlling an air/fuel ratio in an engine having an air/fuel feedback control function wherein a fuel injection quantity Ti is computed by correcting a basic fuel injection quanity Tp by a feedback correction coefficient LAMBDA based on a detected air/ful ratio. Deviation of LAMBDA from a reference value during feedback control is determined to further determine a learning correction coefficient. Upon computation of Ti, Tp is corrected by a learning coefficient. A base air/fuel ratio obtained from Ti computed without correction by LAMBDA is made based on a desired air/fuel ratio. During feedback control, Ti is computed by further correcting the air/fuel ratio by LAMBDA. The learning correction coefficient is divided into an indiscriminate learning correction coefficient K.sub.ALT for learning deviation by the change of the air density with respect to all the areas of the engine driving state and an area-wise learning correction coefficient K.sub.MAP for learning the deviation by dispersion of a part for the respective area. Ti is computed according to Tp, LAMBDA, K.sub.ALT and K.sub.MAP. Where only the deviation by the change of the air density can be learned, the deviation is indiscriminately learned and K.sub.ALT is rewritten. In the other regions, the deviation by dispersion of a part is learned for the respective areas and K.sub.MAP is rewritten.