Abstract:
An image reading apparatus may include a main unit and a cover unit pivotally attached to the main unit. The cover unit may include an image reading device configured to read an image of a document along a conveying path. The image reading device may include a contact image sensor, a sensor holder to hold the contact image sensor, an urging member, and a shock absorber. The contact image sensor is disposed below the conveying path. The sensor holder has an open top boxed shape and holds the contact image sensor in position inside. The urging member is disposed in an inner bottom surface of the sensor holder to urge the contact image sensor toward the conveying path. The shock absorber is disposed between a bottom surface of the contact image sensor and the inner bottom surface of the sensor holder, and is made of a porous material.
Abstract:
Disclosed are a scanner capable of adjusting the focus distance and an image forming apparatus having the same. The scanner may include a focus adjustment structure that comes into an interfering contact with a scanning unit as the scanning unit moves along a scanning path so as to cause a movement of the scanning unit in the direction perpendicular to the scanning path toward and away from the document to be scanned. With such configuration the focus adjustment can be realized using the scanning movement of the scanning unit along the scanning path.
Abstract:
A document reader includes an image sensor. The image sensor is movable in a secondary scanning direction and rotatable about a rotational axis extending in a primary scanning direction, and obtains image information from a region facing a light-receiving surface. Rotation of the image sensor is controlled based on distance information about a distance between a document surface and a platen in such a manner as to make an image distance fall within a depth-of-field range of the image sensor.
Abstract:
An image reading apparatus includes: a contact glass provided at an upper surface of a main body of the apparatus to set a manuscript thereon, an image sensor being positioned below the contact glass and having a reading surface on contact glass side for reading an image from the manuscript on the contact glass, a carriage supporting the image sensor accommodated in a sensor container formed to have a recess open to the contact glass side, a rail member slidably supporting the carriage, and a biasing member biasing the image sensor to the contact glass side via a biased portion adjacent to the reading surface of the image sensor. An upper end of the biasing member is positioned below the contact glass and above the lower surface of the image sensor.
Abstract:
An image reading device includes a document mounting plate having a mounting surface and a rear surface, and an image reading unit. The image reading unit includes a photoelectric converter facing the rear surface, a case to hold the photoelectric converter, and at least one first rotating member and at least one second rotating member that rotate and receive a pressing force from the rear surface of the document mounting plate as the image reading unit moves. The image reading unit also includes a holder configured to support the case and at least one urging device positioned between the holder and the case. The at least one urging device urges the case toward the rear surface, and exerts an urging force opposite to the pressing force, and balances against the pressing force.
Abstract:
An image reading apparatus may include a main unit and a cover unit pivotally attached to the main unit. The cover unit may include an image reading device configured to read an image of a document along a conveying path. The image reading device may include a contact image sensor, a sensor holder configured to hold the contact image sensor, an urging member, and a shock absorber. The contact image sensor is disposed below the conveying path. The sensor holder has an open top boxed shape and is configured to hold the contact image sensor in position inside. The urging member is disposed in an inner bottom surface of the sensor holder to urge the contact image sensor toward the conveying path. The shock absorber is disposed between a bottom surface of the contact image sensor and the inner bottom surface of the sensor holder, and is made of a porous material.
Abstract:
An optical unit assembly is provided with an optical system including an optical component for irradiating a target object with light and receiving the reflected light, a casing for accommodating the optical system, a supporting frame for supporting a part of the casing, and a height adjusting member having a supporting surface for supporting another part of the casing and placed between the supporting frame and the casing. The height adjusting mechanism is slidable between the supporting frame and the casing with a supported state of the casing by the supporting frame substantially maintained, and the supporting surface includes at least a first supporting surface set at a specified first height position and a second supporting surface set at a second height position different from the first height position.
Abstract:
An image reader has an image sensor; a carriage; a positioning portion formed at a predetermined position in a longitudinal direction of the image sensor with respect to a reference position of the image sensor; a connector portion to which an electric cable is connected and which is provided between an end of the carriage and one end in the longitudinal direction of a case of the image sensor; and an engaging portion formed in the carriage. In the image recording apparatus, since the positioning portion is engaged with the engaging portion, it is possible to use a common carriage for a plurality of types of image sensors, and an operation of connecting the electric cable becomes simple.
Abstract:
An image reading device capable of correctly reading an image on a document is provided without the need to increase the size of an upper cover, etc. of the device. A CIS (Contact Image Sensor) is supported by holders and support shafts to be movable toward the upper cover (rib) and is biased toward the rib by compression springs. In this configuration, the rib for holding the document is not required to be installed as a movable component and there is no need to provide a space for allowing the rib to move or providing the upper cover with a mechanism for allowing the rib to move, which can avoid the need to increase the size of the upper cover.
Abstract:
A document camera includes a base, a first arm, a second arm, and a camera head assembly. The base includes control electronics. The first arm is connected at a first end to a side of the base utilizing a first hinge. The second arm is connected at a first end to a second end of the first arm utilizing the second hinge. The camera head assembly is connected at a first end to a second end of the second arm utilizing the third hinge. The camera head assembly includes a lens adjuster and an imaging sensor and movement of the lens adjuster changes an orientation of the imaging sensor. The first side of the first arm is connected to a first side of the base and a second side of the first arm is connected to the second hinge.