Abstract:
Alkali metal sulfides are regenerated from alkali metal hydrosulfides which are produced as a result of the hydroconversion of heavy carbonaceous feeds. The regeneration is effected by contacting the alkali metal hydrosulfide with a metal oxide at elevated temperatures.
Abstract:
A catalytic hydroconversion process for a hydrocarbonaceous oil is effected by dissolving an oil-soluble metal compound in the oil, converting the compound to a solid, non-colloidal catalyst within the oil and reacting the oil containing the catalyst with hydrogen. Preferred compounds are molybdenum compounds.
Abstract:
Dehydrogenatable hydrocarbons are dehydrogenated by contacting them, at dehydrogenation conditions, with a catalytic composite comprising a combination of catalytically effective amounts of a platinum group component, a cobalt component, and a germanium component with a porous carrier material. A specific example of the nonacidic catalytic composite disclosed herein is a combination of a platinum group component, a cobalt component, a germanium component, and an alkali or alkaline earth component with a porous carrier material in amounts sufficient to result in a composite containing about 0.01 to about 2 wt. % platinum group metal, about 0.1 to about 5 wt. % cobalt, about 0.01 to about 5 wt. % germanium and about 0.1 to about 5 wt. % alkali metal or alkaline earth metal.
Abstract:
The process for selective hydrocracking of hydrocarbon fractions consists in that hydrocarbon fractions are contacted with hydrogen at a respective molar ratio of 1:2.5-20, a temperature of 280.degree. - 520.degree. C., and a pressure of 15 - 100 kgf/cm.sup.2 on a zeolite catalyst with a pore size of 4.6 to 6.0 A and containing 0.1 to 5 wt.% of metal of Group VIII of the periodic system, and a tervalent chromium cation with a minimum exchange capacity equal to 30 percent.The herein-proposed process for selective hydrocracking of hydrocarbon fractions is capable of upgrading petroleum products accompanied by producing a synthetic substitute of natural gas.
Abstract:
A hydrogenation process utilizing a hydrogenation catalyst in an oxidized state which catalyst is activated by a method which yields a superior performing hydrogenation catalyst. The hydrogenation catalyst is reduced, sulfided and stripped by a procedure which allows a more economical and time-saving start-up procedure.
Abstract:
Improved processes for the combined desulfurization and hydroconversion of various sulfur-containing pertroleum oils, and particularly various residua feedstocks, are disclosed. These feedstocks are thus contacted with alkali metals, such as sodium, in the molten state, in a conversion zone maintained at specified conditions such that the feedstocks are both desulfurized and subjected to significant hydroconversion, particularly demonstrated by significant reductions in the 1,050.degree. F+ fraction of these feedstocks, as well as significantly decreased Conradson carbon and increased API gravity. In addition, the deep demetallization and moderate denitrogenation of these feedstocks is also achieved. These important results are obtained by maintaining the conversion zone at temperatures of above 750.degree. F, and in the presence of sufficient added hydrogen to produce a hydrogen pressure in the conversion zone of between about 1500 and 3000 psig.
Abstract:
A heavy hydrocarbonaceous oil is converted to lower boiling hydrocarbon products by treatment with hydrogen in the presence of a catalyst comprising a metal phthalocyanine and a particulate iron component.
Abstract:
A catalytic hydroconversion process is effected by reacting with hydrogen a heavy hydrocarbonaceous oil containing a catalyst comprising an iron component and a catalytically active other metal component prepared by dissolving an oil soluble metal compound in the oil and converting the metal compound in the oil to the corresponding catalytically active metal component. Preferred oil soluble compounds are molybdenum compounds.
Abstract:
Sulfur-containing petroleum oil feedstocks which include heavy hydrocarbons constituents undergo simultaneous desulfurization and hydroconversion by contacting such feedstocks with sodamide in the presence of hydrogen and at elevated temperatures. The mixture of reaction products resulting from the above procedure can be separated to give sodium sulfur salts and a petroleum oil product which has been substantially desulfurized and demetallized and significantly upgraded as demonstrated by a reduced Conradson carbon content and an increased API gravity.