Abstract:
Systems for reforming a hydrocarbon feedstock, where the system is operable to selectively reform different sub-components of the hydrocarbon feedstock using at least two structurally-distinct reforming catalysts. Advantages may include a decreased rate of reforming catalyst deactivation and an increased yield of a liquid hydrocarbon reformate product that is characterized by at least one of an increased octane rating and a decreased vapor pressure compared to the liquid hydrocarbon reformate product of conventional one-step reforming systems.
Abstract:
The present invention relates to a kit for water treatment, comprising: a photocatalyst including at least one of SnFe2O4, ZnFe2O4, CuFe2O4, Fe3O4, MnFe2O4 and NiFe2O4; and an active oxide. The present invention also relates to a method for manufacturing a photocatalyst and a use of the prepared photocatalyst.
Abstract:
A process is disclosed for producing ethanol, comprising contacting hydrogen and a feed stream comprising acetic acid in a reactor in the presence of a catalyst comprising a binder and a mixed oxide comprising a promoter metal and tin, and preferably also comprising cobalt. The promoter metal is selected from the group consisting of rhenium, ruthenium, rhodium, palladium, osmium, iridium, platinum, and combinations thereof. The feed stream may comprises pure acetic acid or may comprise a mixture of 50 to 95 wt. % acetic acid and 5 to 50 wt. % ethyl acetate.
Abstract:
A process is disclosed for producing ethanol comprising contacting reactants comprising acetic acid and hydrogen in a reactor in the presence of a first catalyst in a first zone and a second catalyst in a second zone. The first catalyst is a mixed oxide comprising tin and at least one of cobalt or nickel. The second catalyst may be either: i) a supported Group VIII hydrogenation catalyst; ii) a copper-based catalyst; and iii) a secondary mixed oxide catalyst, wherein the secondary mixed oxide catalyst is different than the mixed oxide catalyst of the first zone.
Abstract:
The present invention relates to a kit for water treatment, comprising: a photocatalyst including at least one of SnFe2O4, ZnFe2O4, CuFe2O4, Fe3O4, MnFe2O4 and NiFe2O4; and an active oxide. The present invention also relates to a method for manufacturing a photocatalyst and a use of the prepared photocatalyst.
Abstract translation:本发明涉及一种水处理用试剂盒,其特征在于,包括:包含SnFe 2 O 4,ZnFe 2 O 4,CuFe 2 O 4,Fe 3 O 4,MnFe 2 O 4和NiFe 2 O 4中的至少一种的光催化剂; 和活性氧化物。 本发明还涉及一种光催化剂的制造方法和制备的光催化剂的用途。
Abstract:
A process for selective formation of ethanol from acetic acid by hydrogenating acetic acid in the presence of a catalyst comprising a modified support having cobalt and an alkaline earth support modifier. The active metals may include a first metal of palladium, platinum, and combinations thereof and a second metal of copper, iron, nickel, zinc, silver, chromium, tin, and combinations thereof.
Abstract:
A process is disclosed for producing ethanol comprising contacting reactants comprising acetic acid and hydrogen in a reactor in the presence of a first catalyst in a first zone and a second catalyst in a second zone. The first catalyst is a mixed oxide comprising tin and at least one of cobalt or nickel. The second catalyst may be either: i) a supported Group VIII hydrogenation catalyst; ii) a copper-based catalyst; and iii) a secondary mixed oxide catalyst, wherein the secondary mixed oxide catalyst is different than the mixed oxide catalyst of the first zone.
Abstract:
A hydrogenation catalyst and process using the catalyst for converting a mixture comprising acetic acid and ethyl acetate to ethanol at a first temperature, and the catalyst desorbs ethyl acetate, in the absence of hydrogen, at a second temperature that is greater than the first temperature. The catalyst has a suitable chemisorption of ethyl acetate at the first temperature in the absence of hydrogen. In one embodiment, the first temperature ranges from 125° C. to 350° C. and the second temperature ranges from 300° C. to 600° C. The catalyst comprises one or more active metals or oxide thereof on a support that comprises tungsten or an oxide thereof. The one or more active metals are selected from the group consisting of cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, and molybdenum.
Abstract:
Convert a mixture of synthesis gas and ethylene to a product stream that contains at least one C3 oxygenate using a supported, heterogeneous catalyst represented by formula RhaAgbSncXdYeOx. In the formula, X is at least one transition element other than rhodium or silver, and Y is at least one element selected from alkali metals and alkaline earth metals.
Abstract:
A process for selective formation of ethanol from acetic acid includes contacting a feed stream containing acetic acid and hydrogen at an elevated temperature with catalyst comprising platinum and tin on a high surface area silica promoted with calcium metasilicate. Selectivities to ethanol of over 85% are achieved at 280° C. with catalyst life in the hundreds of hours.