Abstract:
An apparatus for determining assignments to attributes (e.g., electrical power or overall dimensional size) of components within a system. A computerized constraint network is constructed which uses constraint agents, variable agents, and task agents in order to make assignments to the attributes of the components based upon market-based constraint optimization techniques. The attributes have variables indicative of the assignments to the attributes. Constraint data structures assist the agents in determining permissible assignments for the variables. The constraint data structures use preferential rules for determining the assignments to the variables. The preferential rules indicate which assignments for the variables of the agents produce higher utility and lower cost.
Abstract:
The present invention includes a computer-implemented process for determining optimum configuration parameters for a buffered industrial process. A population is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.
Abstract:
A system of case-based reasoning for sensor prediction in a technical process, especially in a cement kiln, method and apparatus therefore, and wherein the system provides accurate predictions of the cement kiln behavior for a limited period into the future. The invention utilizes a method of case-base-reasoning (CBR) for the task of sensor value prediction. An apparatus for implementing the method is characterized by a database (100) in which the relevant time interval data are stored, a test generator (101) and an optimisation unit (102- 104) for the selection and optimisation of the time interval data.
Abstract:
A noise reduction system reduces noise associated with an input signal provided to a control system, while substantially minimizing the adverse affect on the responsiveness and stability of the control system. The noise reduction system includes a processor, a memory subsystem and processor executable code. The processor executable code causes the processor to perform a number of steps. Initially, the processor determines an input signal level of an input signal at an input of a noise reduction system. Next, the processor determines an output signal level of an output signal at an output of the noise reduction system. The processor then determines a magnitude of a difference signal which is the difference between the input signal level and the output signal level. When the magnitude of the difference signal is less than a predetermined noise limit, the input signal is provided to an input of a control system. When the magnitude of the difference signal is greater than or equal to the predetermined noise limit, the output signal is provided to the input of the control system.
Abstract:
The control unit sets up the center and an insensitive zone of a zoom seesaw switch provided in a drive unit of an ENG lens by an electrical processing. The control unit is capable of dispensing with a mechanical adjustment of the center and the insensitive zone of the zoom seesaw switch in assembling the product, and the assembly of the product is thus simplified. On turning on a center setting switch while the zoom seesaw switch is released from the operation, an operational position of the zoom seesaw switch at that time is accurately set as the center that brings the moving rapidity of the zoom lens to zero. On setting an insensitive zone size by an insensitive zone setup device, the moving rapidity of the zoom lens becomes zero whenever the operational position of the zoom seesaw switch is within the insensitive zone. Any of these settings is carried out by a processing of a CPU.
Abstract:
The present invention relates to a method of inspecting a product, comprising extracting defects from the product, classifying the defects on the basis of information about the extracted defects representing the analogy of the defects, extracting the feature data of the defects on the basis of the result of defect classification, and feeding back the feature data of the extracted defects for inspection; and to an inspection system comprising an inspecting means for extracting defects from the product, a defect classifying means for classifying the defects on the basis of information about the defects extracted by the inspecting means representing the analogy of the defects, and a feature data extracting means for extracting the feature data of the defects on the basis of the result of defect classification provided by the defect classifying means, characterized in that the feature data of the defects extracted by the feature data extracting means is fed back to the inspecting means for inspecting the product. The present invention relates also to a method of manufacturing a semiconductor device or the like, comprising extracting defects from the semiconductor device or the like, classifying the defects on the basis of information about the extracted defects representing the analogy of the defects, extracting the feature data of the defects on the basis of the result of defect classification, and feeding back the feature data of the extracted defects to an apparatus for manufacturing the semiconductor device or the like.
Abstract:
A single-input multi-output control system particularly useful to equally distributing the noise effects and/or the parametric variations among the multiple outputs, comprising two or more control sub-systems, each of said two or more control sub-systems having a corresponding error node (Nei) and an output (Yi) coincident with one of said multiple outputs, and an auxiliary node (Nc) adapted to connect said error nodes (Nei) with one another.
Abstract:
A method and a device are described for filtering a variable. A first filtering arrangement is used for forming an output variable as a function of an input variable, the first filtering arrangement having at least a delaying effect. The input variable of the first filtering arrangement is corrected using a correcting variable which is obtained by starting from the input variable of the first filtering arrangement and by filtering, using a second filtering arrangement.
Abstract:
A controller for an appliance operated by a microprocessor has a rotatable control knob mounted on a shaft that extends through an outer surface of the appliance. A disk with a plurality of apertures spaced around the circumference thereof is mounted on the inner end of the shaft such that the rotation of the control knob generates a succession of signals readable by the microprocessor. Markings around the circumference of the control knob indicate the cycles that the appliance can perform and the various stages of the cycles. Each of the markings has an indicator such as an LED associated therewith and the microprocessor is configured to successively energize the indicator adjacent the marking as the knob is turned and to indicate the indicated cycle or stage when a stage switch is activated.
Abstract:
An optimization system is provided utilizing a Bayesian neural network calculation of a derivative wherein an output is optimized with respect to an input utilizing a stochastical method that averages over many regression models. This is done such that constraints from first principal models are incorporated in terms of prior art distributions.