Abstract:
An ice-making device includes a duct through which ice is dispensed and a duct-covering part opening and closing the duct. A sensor part senses whether the duct-covering part closes the duct and a control part controls the duct-covering part to open the duct when the sensor part senses that the duct-covering part fails to close the duct and the duct-covering part has been attempting to close the duct for at least a preset period of time.
Abstract:
Disclosed are a method for controlling a driving of a drum type washing machine preventing vibration and noise of a drum, reducing a usage of washing water, and reducing rinse time, and an apparatus thereof. To this end, the drum is rotated with a preset equilibrium speed faster than a speed that vibration of the drum is excessively generated accordingly as a rotation speed of the drum is decreased when a dewatering process of laundry is completed, and washing water is supplied into the drum type washing machine while maintaining the drum as the preset equilibrium speed.
Abstract:
The present disclosure relates to a semiconductor light-emitting device and a method of manufacturing the same, and more particularly, to a III-nitride semiconductor light-emitting device which improves external quantum efficiency by forming an irregular portion on a surface of a semiconductor layer by a protrusion formed on a substrate, and a method of manufacturing the same.
Abstract:
Disclosed is a conductive polymer composition for a polarizer film to impart the surface of the polarizer film for liquid crystal displays with antistatic performance. The composition is applied on the surface of the polarizer film without additional surface treatment and is then dried, thereby manufacturing a highly reliable antistatic polarizer film, which has high adhesive strength between the polarizer film and the adhesive layer and also results in no transfer of the adhesive layer of the polarizer film to a glass or transparent polymer substrate when the polarizer film is attached to the substrate and then separated therefrom.
Abstract:
Disclosed are semiconductor apparatuses and methods of fabricating the same. According to the methods, the number of operations for fabricating the semiconductor apparatuses having a plurality of layers may be the same as the number of operations for fabricating a semiconductor apparatus having one layer. The semiconductor apparatuses may include first active regions extending in the same direction, in parallel, separated from each other and including first and second impurity doped regions on opposite ends of the first active regions from each other. The semiconductor apparatuses may further include second active regions on a layer above the first active regions, extending in the same direction as the first active regions, separated from each other, in parallel, and including first and second impurity doped regions on opposite ends of the second active regions from each other.
Abstract:
Ice maker including an ice making container (100) having a plurality of cavities (120) for forming ice, a heater body (210) on one side of the ice making container for selective generation of heat, and heating bars (220) each extended from the heater body to the cavity by a predetermined length with a profile in conformity with a bottom surface profile of the cavity (120) with a gap to the bottom surface such that the heating bar (220) is submerged under water in the cavity for causing a temperature gradient during ice making.
Abstract:
Provided is a semiconductor apparatus including a substrate region, an active region on the substrate region, a gate pattern on the active region, and first and second impurities-doped regions along both edges of the active region that do not overlap the gate pattern. The length of the first and second impurities-doped regions in the horizontal direction may be shorter than in the vertical direction. The first and second impurities-doped regions may be formed to be narrow along both edges of the active region so as not to overlap the gate pattern.
Abstract:
Semiconductor substrates and methods of manufacturing the same are provided. The semiconductor substrates include a substrate region, an insulation region and a floating body region. The insulation region is disposed on the substrate region. The floating body region is separated from the substrate region by the insulation region and is disposed on the insulation region. The substrate region and the floating body region are formed of materials having identical characteristics. The method of manufacturing the semiconductor substrate including forming at least one floating body pattern by etching a bulk substrate, separating the bulk substrate into a substrate region and a floating body region by etching a lower middle portion of the floating body pattern, and filling an insulating material between the floating body region and the substrate region.
Abstract:
Semiconductor devices and semiconductor apparatuses including the same are provided. The semiconductor devices include a body region disposed on a semiconductor substrate, gate patterns disposed on the semiconductor substrate and on opposing sides of the body region, and first and second impurity doped regions disposed on an upper surface of the body region. The gate patterns may be separated from the first and second impurity doped regions by, or greater than, a desired distance, such that the gate patterns do not to overlap the first and second impurity doped regions in a direction perpendicular to the first and second impurity doped regions.
Abstract:
7-(3-Aminomethyl-4-methoxyiminopyrrolidin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid methanesulfonate and hydrates thereof, processes for their preparation, pharmaceutical compositions comprising them, and their use in antibacterial therapy.