摘要:
Disclosed are semiconductor apparatuses and methods of fabricating the same. According to the methods, the number of operations for fabricating the semiconductor apparatuses having a plurality of layers may be the same as the number of operations for fabricating a semiconductor apparatus having one layer. The semiconductor apparatuses may include first active regions extending in the same direction, in parallel, separated from each other and including first and second impurity doped regions on opposite ends of the first active regions from each other. The semiconductor apparatuses may further include second active regions on a layer above the first active regions, extending in the same direction as the first active regions, separated from each other, in parallel, and including first and second impurity doped regions on opposite ends of the second active regions from each other.
摘要:
Non-volatile memory devices highly integrated using an oxide based compound semiconductor and methods of operating and fabricating the same are provided. A non-volatile memory device may include one or more oxide based compound semiconductor layers. A plurality of auxiliary gate electrodes may be arranged to be insulated from the one or more oxide based compound semiconductor layers. A plurality of control gate electrodes may be positioned between adjacent pairs of the plurality of auxiliary gate electrodes at a different level from the plurality of auxiliary gate electrodes. The plurality of control gate electrodes may be insulated from the one or more oxide based compound semiconductor layers. A plurality of charge storing layers may be interposed between the one or more oxide based compound semiconductor layers and the plurality of control gate electrodes.
摘要:
A semiconductor device includes a semiconductor substrate, a gate pattern disposed on the semiconductor substrate, a body region disposed on the gate pattern and a first impurity doping region and a second impurity doping region. The gate pattern is disposed below the body region and the first impurity doping region and the second impurity doping region.
摘要:
A method for manufacturing a memory device including a resistance change layer as a storage node according to example embodiment(s) of the present invention and a memory device made by the method(s) are provided. Pursuant to example embodiments of the present invention, the method may include stacking (sequentially or otherwise) a conductive material layer, a diode layer and a data storage layer on a bottom layer, forming a first material layer on the data storage layer, forming a first hole exposing the data storage layer in the first material layer, forming a first spacer with a second material layer on the sidewall of the first hole, filling the first hole with a third material layer and covering the first spacer; removing the first material layer, forming a second spacer with a fourth material layer on the sidewall of the first spacer; removing the third material layer, and forming a second hole exposing the bottom layer in a first stack structure using the first and second spacers as a mask. These operations may result in the formation of bit lines and word lines as described.
摘要:
A semiconductor memory device and methods of manufacturing and operating the same may be provided. The semiconductor memory device may include a substrate, at least a pair of fins protruding from the semiconductor substrate and facing each other with a gap between fins of the pair of fins, an insulating layer formed between the pair of the fins, a storage node formed on the pair of fins and/or a surface of a portion of the insulating layer, and/or a gate electrode formed on the storage node.
摘要:
A method for manufacturing a memory device including a resistance change layer as a storage node according to example embodiment(s) of the present invention and a memory device made by the method(s) are provided. Pursuant to example embodiments of the present invention, the method may include stacking (sequentially or otherwise) a conductive material layer, a diode layer and a data storage layer on a bottom layer, forming a first material layer on the data storage layer, forming a first hole exposing the data storage layer in the first material layer, forming a first spacer with a second material layer on the sidewall of the first hole, filling the first hole with a third material layer and covering the first spacer; removing the first material layer, forming a second spacer with a fourth material layer on the sidewall of the first spacer; removing the third material layer, and forming a second hole exposing the bottom layer in a first stack structure using the first and second spacers as a mask. These operations may result in the formation of bit lines and word lines as described.
摘要:
Provided are relatively higher-performance wire-type semiconductor devices and relatively economical methods of fabricating the same. A wire-type semiconductor device may include at least one pair of support pillars protruding above a semiconductor substrate, at least one fin protruding above the semiconductor substrate and having ends connected to the at least one pair of support pillars, at least one semiconductor wire having ends connected to the at least one pair of support pillars and being separated from the at least one fin, a common gate electrode surrounding the surface of the at least one semiconductor wire, and a gate insulating layer between the at least one semiconductor wire and the common gate electrode.
摘要:
Provided are methods for fabricating semiconductor devices incorporating a fin-FET structure that provides body-bias control, exhibits some characteristic advantages associated with SOI structures, provides increased operating current and/or reduced contact resistance. The methods for fabricating semiconductor devices include forming insulating spacers on the sidewalls of a protruding portion of a first insulation film; forming a second trench by removing exposed regions of the semiconductor substrate using the insulating spacers as an etch mask, and thus forming fins in contact with and supported by the first insulation film. After forming the fins, a third insulation film is formed to fill the second trench and support the fins. A portion of the first insulation film is then removed to open a space between the fins in which additional structures including gate dielectrics, gate electrodes and additional contact, insulating and storage node structures may be formed.
摘要:
A NAND-type nonvolatile memory device includes a first string and a second string. The ends of each of the first and second strings are connected to a common bit line and a common source line, respectively. Each of the first string and the second string have a string selection transistors, a plurality of unit devices and a source selection transistor. Word lines are respectively connected to control gates of the unit devices in the same rows. A first string selection line and a second string selection line are respectively connected to the gates of the string selection transistors of the first string and the second string. A first source selection line and a second source selection line are respectively connected to the gates of the first string and the second string.