摘要:
A mechanism allows for changing the optical strength of a liquid-filled lens having a cavity filled with fluid. A reservoir contains additional fluid and is in fluid communication with the cavity, and the mechanism draws fluid from the reservoir into the cavity or pulls fluid from the cavity back into the reservoir, whereby a change in the amount of fluid within the lens cavity changes the lens's optical strength. A membrane seals the reservoir, and a plunger impinges upon the membrane. A movement device, such as a barrel screw or lever, moves the plunger in a controlled manner toward the membrane to increase pressure within the reservoir and thereby force fluid out of the reservoir into the lens cavity, and away from the membrane to decrease pressure within the reservoir and thereby withdraw fluid from the lens cavity and into the reservoir.
摘要:
An electronic device (12) for processing information wirelessly received from another electronic device (14) or to be wirelessly sent to the another electronic device (14) may include a first processor (20) that controls only wireless communications with the another electronic device (14) and excluding operations associated only with the electronic device (12), a second processor (16) that controls the operations associated only with the electronic device (12) and excluding the wireless communications with the another device (14), and a clock circuit (24, 190) that is separate and independent from the first and second processors (20, 16) and that produces at least one timing signal that regulates synchronous exchange of the information between the first and second processors (20, 16).
摘要:
A method of monitoring pressure of a gas species up to at most a predetermined maximum pressure value is disclosed. The method includes exposing the gas species to transmission of laser light, periodically modulating the wavelength of the laser light over a wavelength band including at least one absorption line of the gas species, optoelectrically converting the transmitted laser light, thereby generating an electric output signal, performing at least one of first filtering the electric output signal with a filter characteristic having a lower cut-off frequency not lower than a transition frequency and of second filtering the electric output signal with a bandpass filter characteristic having an upper cut-off frequency not higher than the transition frequency and a lower cut-off frequency above the modulation frequency of the periodic wavelength modulation. The output of at least one of the filterings is evaluated as a pressure indicative signal.
摘要:
An optical detection system and method detects movement of an optical pointing device in a data processing environment. The system works with any surface than can diffusely scatter a collimated beam from a coherent light source. Specifically, the system comprises a coherent light source and an optical sensing assembly. The optical sensing assembly comprises a plurality of photosensor arrays and a plurality of optical elements. Each photosensor array includes pixels of a particular size and shape. Each optical element has an artificially limited aperture and is associated, through optical matching, with a respective photosensor array. The coherent light source generates a collimated beam that is diffusely reflected off of the surface. The optical sensing assembly receives the diffusely reflected, or scattered, collimated beam and passes it through the artificially limited apertures of the optical elements to the associated corresponding photosensor array. Passing the scattered light through the optical elements generates speckle images that appear on the pixels of the photosensor arrays. Based on the pixel shape, a pixel value associated with the speckle image provides a speckle image data signal. When there is translation of the pointing device, a new set of speckle images, each reassembling to a translated version of the previous speckle image, are generated and another speckle image data signal is generated. The new and the previous speckle image data signals are then used in a motion detection analysis to determine the points of the two data signals that give a displacement value.