摘要:
Systems and methods for prioritizing transmission control protocol (TCP) flows for communication devices in a network are described herein. The systems and methods herein may further allocate bandwidth to the flows based on the priority of the flows. Further, the systems and methods herein allow devices to determine whether particular flows share a traffic flow constraint or bottleneck that limits the overall available bandwidth to the flows. Therefore, allocation of bandwidth for one flow may be adjusted based on allocation of bandwidth to another flow if the flows share a traffic flow constraint. Further, the systems and methods herein allow for target data rates to be determined for the flows based on shared traffic flow constraints.
摘要:
Methods and apparatuses are provided that facilitate routing of messages of a positioning protocol, such as long term evolution (LTE) positioning protocol annex (LPPa). A positioning server can determine a network area identifier of one or more messages based at least in part on an identifier of a base station associated with the one or more messages. Based at least in part on the network area identifier, the positioning server can provide the one or more messages to an intermediate network node corresponding to the one or more base stations, such as a mobility management entity (MME). MME can similarly provide the one or more messages to an optional gateway between it and the one or more base stations based at least in part on receiving the network area identifier in the one or more messages. In addition, a base station can update positioning information with the positioning server.
摘要:
Certain aspects of the present disclosure provide methods and apparatus for implementing Automatic Neighbor Relation (ANR) functions for relay nodes (RNs), home base stations (e.g., home evolved Node Bs (HeNBs), and related entities (e.g., donor evolved Node Bs (DeNBs) and HeNB gateways). X2 is designed to be an end-to-end protocol between two evolved Node Bs (eNBs). However, for the case of RNs or HeNBs, this protocol may involve a proxy function (e.g., where the DeNB acts a proxy for the RN). This creates several issues, such as how to manage a potentially very large set of cells under a gateway and how to route S1 messages used for X2 endpoint discovery. Therefore, certain aspects of the present disclosure generally relate to methods and apparatus for maintaining the X2 connections intelligently and hiding the large number of nodes from the X2 endpoints based on various triggers.
摘要:
The disclosure is directed to methods and apparatuses for seamless and efficient wireless handoffs of an access terminal between access points in a communication network. The access points include memory configured to buffer packets received from a network for the access terminal, a processor configured to queue one of the packets for over the air transmission to the access terminal and fragment the data in the queued packet into multiple frames, and a transmitter configured to transmit the framed data over the air to the access terminal. The processor is further configured to maintain an indicator relating to the portion of the data in the queued packet that remains to be transmitted.
摘要:
Providing for select Internet Protocol traffic offload (SIPTO) in a mobile communication environment is described herein. By way of example, SIPTO traffic can be facilitated via local packet gateways (P-GWs) that provide an interface to the Internet or a like data network, in addition to a centralized gateway GPRS support node (GGSN). Eligibility for SIPTO can be on a user equipment (UE) by UE basis; for instance, relying on stored subscription or account information to determine SIPTO eligibility. In particular aspects, eligibility for SIPTO can also be based on a packet network by packet network basis, or a combination of the foregoing. This enables flexibility in determining whether SIPTO can be established for a given UE in a given location, and can be based for instance on UE capability, subscription status information, data network capability, tariff rates, and so on, as well as different legal requirements of government jurisdictions.
摘要:
Local IP access paging schemes facilitate paging of an access terminal when packets destined for the access terminal are received via local IP access. In some implementations, a local entity acquires information that enables local paging of the access terminal by sniffing messages passing through the local entity. In some implementations, a local entity sends a packet or message to cause the core network to page an access terminal when a local IP access packet destined for the access terminal arrives at the local entity.
摘要:
Access control for an access point (e.g., a cell of the access point) may be based on an access mode associated with the access point. For example, depending on the access mode, access control may involve performing a membership check for the access point. Such a membership check may be performed at a network entity, a source access point, or some other suitable location in a network. In some aspects, access control may involve performing a membership check for an access point in conjunction with a context fetch procedure. Such a procedure may be performed, for example, when an access terminal arrives at the access point after experiencing RLF at another access point.
摘要:
Systems and methodologies are described that facilitate packet routing among relay nodes in a wireless network. Bearer quality of service (QoS) mapping is provided for internet protocol (IP) relays by utilizing differentiated services (DiffServ) code point (DSCP) values to determine a bearer for communicating related packets. In addition, SDF filtering at a gateway node can be modified to route packets over certain tunnels to provide QoS for the packets.
摘要:
Systems and methodologies are described that facilitate compressing headers for internet protocol (IP) relay nodes. In particular, a plurality of IP headers in a packet and at least one tunneling protocol header can be compressed to facilitate efficient communications of packets between IP relay nodes and/or a donor access point. In addition, IP relay nodes can be limited in a number of upstream bearers and can provide a greater number of downstream bearers. In this regard, the IP relay nodes can compress headers for upstream packets related to one or more downstream devices utilizing disparate context identifiers for the upstream packets. Thus, the upstream packets can be distinguished from each other while sent over the same upstream bearer.
摘要:
Systems and methodologies are described that facilitate packet routing among relay eNBs in a wireless network. Packet data convergence protocol (PDCP) layer communications from a user equipment (UE) can terminate at a donor evolved Node B (eNB) and vice versa. In this regard, a relay application protocol (RAPP) layer is defined to transport application layer control data among relay eNBs to facilitate appropriate routing. RAPP layer messages can be similar to control messages at other application layers, such as S1-AP, X2, etc., while additionally including a relay UE identifier for routing the messages among relay eNBs. In addition, RAPP layer messages can exclude other parameters normally defined in other application layers to protect security and encryption/decryption details.