Abstract:
A touch substrate includes a base substrate and a plurality of first touch electrodes and a plurality of second touch electrodes electrically insulated from each other. At least one first touch electrode and at least one second touch electrode each include a mesh structure and a plurality of preset patterns. The mesh structure has a plurality of meshes, at least one of which is provided with at least one preset pattern therein, and at least one of the plurality of preset patterns is electrically insulated from a mesh in which it is located.
Abstract:
A touch substrate, a method for forming the same and a touch display device are provided. The touch substrate includes: a primary touch region, a secondary touch region, a peripheral region, primary touch electrodes at the primary touch region, secondary touch electrodes at the secondary touch region, a plurality of bonding terminals, a plurality of primary touch signal channels and a plurality of secondary touch signal channels configured to transmit touch signals to the secondary touch electrodes at the peripheral region, where each bonding terminal is coupled to a corresponding primary touch electrode via a signal transmission line, and configured to provide the primary touch signal channel to transmit the touch signal to the corresponding primary touch electrode, where at least a part of the primary touch signal channels is reused as the secondary touch signal channels.
Abstract:
Disclosed is a touch substrate, including a base substrate; a plurality of first touch electrodes and a plurality of second touch electrodes arranged on the base substrate, wherein the plurality of first touch electrodes and the plurality of second touch electrodes have an overlapping area and are electrically insulated from each other; and a plurality of touch units arranged on the base substrate. Each of the touch units includes at least two first touch electrodes and at least one second touch electrode, and the at least two first touch electrodes in each touch unit are connected in parallel. By arranging at least two first touch electrodes connected with each other in parallel in each touch unit, the channel resistance is reduced effectively, and a large-sized touch product is realized. A method of fabricating a touch substrate, a display panel, and a display device are further disclosed.
Abstract:
A wearable apparatus is provided, which can express information in more dimensions. The wearable apparatus includes a signal receiving module, a signal processing module, at least one signal generating module and at least one signal outputting module, which are all disposed on a case body. A virtual reality method and a terminal system are further provided.
Abstract:
Embodiments of the present disclosure provide a shift register unit and a driving method thereof, a row scanning driving circuit and a display device. The shift register unit includes an input terminal, a reset terminal, and an output terminal, and further includes an input module configured to pull up the electric level at the first node, an output module configured to pull up the electric level at the output terminal, a reset module configured to pull down the electric level at the first node, and a first pull-down module configured to pull down the electric level at the output terminal. Embodiments of the present disclosure can solve the problem that the floating state of the row scanning driving circuit affects the output stability.
Abstract:
The present disclosure provides a method for manufacturing a touch panel, the touch panel, a touch screen and a display device. The method includes steps of: forming, on a transparent substrate, a non-opaque film layer with a micro-pattern; and forming a touch panel electrode on the non-opaque film layer. The non-opaque film layer is configured to vanish a shadow of the touch panel electrode.