Abstract:
In one embodiment, statistical information is collected relating to one or both of communication link quality or channel quality in a frequency-hopping network, in which packets are sent according to a frequency-hopping schedule that defines one or more timeslots, each timeslot corresponding to a transmission frequency. Also, a performance metric of a particular transmission frequency corresponding to a scheduled timeslot is predicted based on the collected statistical information. Based on the predicted performance metric, it is determined whether a transmitting node in the frequency-hopping network should transmit a packet during the scheduled timeslot using the particular transmission channel or wait until a subsequent timeslot to transmit the packet using another transmission frequency.
Abstract:
In one embodiment, a control loop control using a broadcast channel may be used to communicate with a node under attack. A management device may receive data indicating that one or more nodes in a computer network are under attack. The management device may then determine that one or more intermediate nodes are in proximity to the one or more nodes under attack, and communicate an attack-mitigation packet to the one or more nodes under attack by using the one or more intermediate nodes to relay the attack-mitigation packet to the one or more nodes under attack.
Abstract:
In one embodiment, a traffic model manager node receives data flows in a network and determines a degree to which the received data flows conform to one or more traffic models classifying particular types of data flows as non-malicious. If the degree to which the received data flows conform to the one or more traffic models is sufficient, the traffic model manager node characterizes the received data flows as non-malicious. Otherwise, the traffic model manager node provides the received data flows to a denial of service (DoS) attack detector in the network to allow the received data flows to be scanned for potential attacks.
Abstract:
In one embodiment, a device in a network receives a set of output label dependencies for a set of attack detectors. The device identifies applied labels that were applied by the attack detectors to input data regarding a network, the applied labels being associated with probabilities. The device determines a combined probability for two or more of the applied labels based on the output label dependencies and the probabilities associated with the two or more labels. The device selects one of the applied labels as a finalized label for the input data based on the probabilities associated with the applied labels and on the combined probability for the two or more labels.
Abstract:
In one embodiment, a training request is sent to a plurality of nodes in a network to cause the nodes to generate statistics regarding unicast and broadcast message reception rates associated with the nodes. The statistics are received from the nodes and a statistical model is generated using the received statistics and is configured to detect a network attack by comparing unicast and broadcast message reception statistics. The statistical model is then provided to the nodes and an indication that a network attack was detected by a particular node is received from the particular node.
Abstract:
In one embodiment, local model parameters are generated by training a machine learning model at a device in a computer network using a local data set. One or more other devices in the network are identified that have trained machine learning models using remote data sets that are similar to the local data set. The local model parameters are provided to the one or more other devices to cause the one or more other devices to generate performance metrics using the provided model parameters. Performance metrics for model parameters are received from the one or more other devices and a global set of model parameters is selected for the device and the one or more other devices using the received performance metrics.
Abstract:
In one embodiment, techniques are shown and described relating to quarantine-based mitigation of effects of a local DoS attack. A management device may receive data indicating that one or more nodes in a shared-media communication network are under attack by an attacking node. The management device may then communicate a quarantine request packet to the one or more nodes under attack, the quarantine request packet providing instructions to the one or more nodes under attack to alter their frequency hopping schedule without allowing the attacking node to learn of the altered frequency hopping schedule.
Abstract:
The present technology pertains to a system, method, and non-transitory computer-readable medium for evaluating the impact of network changes. The technology can detect a temporal event, wherein the temporal event is associated with a change in a network configuration, implementation, or utilization; define a first period prior to the temporal event and a second period posterior to the temporal event; and compare network data collected in the first period and network data collected in the second period.
Abstract:
In one embodiment, a device receives observed access point (AP) features of one or more APs in a monitored network. The device clusters the observed AP features within a latent space to form AP feature clusters. The device applies labels to the AP feature clusters within the latent space. The device uses the applied labels to the AP feature clusters to describe future behaviors of the one or more APs in the monitored network.
Abstract:
In one embodiment, a device receives data regarding usage of access points in a network by a plurality of clients in the network. The device maintains an access point graph that represents the access points in the network as vertices of the access point graph. The device generates, for each of the plurality of clients, client trajectories as trajectory subgraphs of the access point graph. A particular client trajectory for a particular client comprises a set of edges between a subset of the vertices of the access point graph and represents transitions between access points in the network performed by the particular client. The device identifies a transition pattern from the client trajectories by deconstructing the trajectory subgraphs. The device uses the identified transition pattern to effect a configuration change in the network.