Abstract:
A turbine engine component is provided that has a surface that contains a plurality of depressions that are effective to increase the surface area of the component. The depressions are generally concave in contour and improve the heat transfer characteristics of the component. Methods for forming the turbine engine components are also disclosed.
Abstract:
A method of enhancing heat transfer and cooling efficiency in a cooling passage includes forming a plurality of turbulator rings in the passage, the rings projecting inwardly, substantially perpendicular to a cooling flow direction in the passage; and using a patterned electrode, forming at least one gap in one or more of the turbulator rings, extending substantially parallel to the flow direction.
Abstract:
A combustor liner is provided on its backside cooling surface with a braze alloy coating and cooling enhancement material, preferably metallic particles to enhance the heat transfer between the liner and the cooling medium. The surface area of the backside coated area is increased substantially by the coating and particles in relation to the uncoated surface areas. Consequently, the life of the liner is extended.
Abstract:
A process for creating microgrooves within or adjacent to a TBC layer applied to a gas turbine engine component such as a blade or vane. The process includes the steps of applying a bond coat to the surface of the substrate. A wire mesh is placed a predetermined distance above the bond coat surface. With the wire mesh in position, about 0.002 inches of an inner TBC is applied over the bond coat. The wire in the wire mesh causes a shadow effect as the TBC is applied, so that there are variations in the thickness of the applied TBC, forming micro channels. The wire mesh is removed and an additional outer TBC layer is applied over the inner TBC layer, and the variations in thickness are bridged by the continued deposition of the columnar TBC over the inner TBC layer, forming the microgrooves.
Abstract:
A method of forming a turbine engine component, includes providing a mold having a textured region, pouring a molten alloy into the mold, and cooling the molten alloy to form a turbine engine component, wherein the turbine engine component has an enhanced surface area region corresponding to the textured region of the mold, the enhanced surface area region comprising randomly arranged bumps.
Abstract:
The present invention provides active convection cooling through micro channels within or adjacent to a bond coat layer applied to the trailing edge of a turbine engine high pressure airfoil. When placed adjacent to or within a porous TBC, the micro channels additionally provide transpiration cooling through the porous TBC. The micro channels communicate directly with at least one cooling circuit contained within the airfoil from which they receive cooling air, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate includes an actively cooled flow path surface region that can reduce the cooling requirement for the substrate, the engine can run at a higher firing temperature without the need for additional cooling air, achieving a better, more efficient engine performance. In one embodiment, a metallic bond coat is added to an airfoil with pressure side bleed film cooling slots. The bond coat is grooved such that the grooves are structured, with at least one structured micro groove communicating with at least one cooling fluid supply contained within the airfoil. A TBC layer is applied, using a shadowing technique, over the structured grooves, resulting in the formation of hollow micro channels for the transport of the cooling fluid. In different embodiments, the location of the structured grooves, hence, the resulting micro channels are placed within the airfoil substrate at the substrate/bond coat interface or within the TBC layer.
Abstract:
The present invention provides for cooling the squealer tip region of a high pressure turbine blade used in a gas turbine engine comprising coating the squealer tip with a metallic bond coat. Micro grooves oriented in the radial direction are fabricated into the airfoil on the interior surface of the squealer tip above and substantially perpendicular to the tip cap. A micro groove oriented in the axial direction is fabricated along the joint corner between the squealer tip side wall and the, tip cap to connect and act as a plenum with all of the micro grooves oriented in the radial direction. Tip cap cooling holes are drilled through the tip cap and connected to the micro groove that ultimately forms a plenum. TBC ceramic is then deposited on both blade external surfaces and the tip cavity, forming micro channels from micro grooves as a result of self shadowing. In this manner, cooling fluid passes from a cooling fluid source through the tip cap holes and into the plenum created by the micro channel, subsequently passing into the micro channels that are oriented in the radial direction. Cooling fluid is thereby directed through the micro channels to cool the squealer, exiting in the vicinity of the tip. Since the TBC is porous, some of the cooling fluid will also flow through the TBC to provide transpiration cooling. The present invention further comprises both the cooled blade and squealer tip region formed by the foregoing methods and the blade and squealer tip with the micro channels for cooling the squealer tip.
Abstract:
An electrode having a dielectric coating is patterned to provide axially spaced rows of insulating material on the external surface of the electrode with one or more gaps in the insulating material of each row. The electrode is placed in a preformed hole of a turbine bucket and an electrolyte is provided for flow between the electrode and the walls of the hole. Upon application of an electrical current, portions of the material of the interior wall surface directly opposite the non-insulated portions of the electrode are dissolved, forming grooves. The insulated portions of the electrode leave axially spaced rows of projections extending toward the axis of the hole. The gaps in the rows or projections are axially misaligned. The projections form turbulators in the cooling flow passages of the bucket, enhancing the heat transfer coefficient.
Abstract:
A method of repairing a thermal barrier coating on a component designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method more particularly involves repairing a thermal barrier coating on a component that has suffered localized spallation of the thermal barrier coating. After cleaning the surface area of the component exposed by the localized spallation, a ceramic paste comprising a ceramic powder in a binder is applied to the surface area of the component. The binder is then reacted to yield a ceramic-containing repair coating that covers the surface area of the component and comprises the ceramic powder in a matrix of a material formed when the binder was reacted. The binder is preferably a ceramic precursor material that can be converted immediately to a ceramic or allowed to thermally decompose over time to form a ceramic, such that the repair coating has a ceramic matrix. The repair method can be performed while the component remains installed, e.g., in a gas turbine engine. Immediately after the reaction step, the gas turbine engine can resume operation during which the binder is further reacted/converted and the strength of the repair coating increases.
Abstract:
A turbine blade includes an integral airfoil, platform, shank, and dovetail, with a pair of holes in tandem extending through the platform and shank in series flow communication with an airflow channel inside the shank. Cooling air discharged through the tandem holes effects multiple, convection, impingement, and film cooling using the same air.