Abstract:
A single continuous closed-loop power control feedback system provides seamless power control/for a power amplifier and also enables an AM signal to be injected into the power amplifier through the power amplifiers' control port. The AM signal is developed by an I/Q modulator and supplied to a comparator located in the power control loop. By using leakage from the power amplifier as feedback to a phase locked loop during initial power amplifier power ramp-up, the single continuous closed-loop power control system provides continuous feedback to the phase locked loop during the entire power amplification ramp-up period and eliminates the need for multiple feedback loops,
Abstract:
This invention relates to an oscillator that includes first and second switching elements that each have a control terminal, and first and second conduction terminals. The control terminal of the second switching element is coupled to the first conduction terminal of the first switching element, and the control terminal of the first switching element is coupled to the first conduction terminal of the second switching element. The oscillator also may include first and second capacitive elements, first and second inductive elements, and a resistive element. The first capacitive element may be coupled between the control terminal of the first switching element and a first reference node, and the second capacitive element may be coupled between the control terminal of the second switching element and the first reference node. The first inductive element may be coupled between the control terminal of the first switching element and a second reference node, and the second inductive element may be coupled between the control terminal of the second switching element and the second reference node. The resistive element may be coupled between the second conduction terminals of the switching elements and the first reference node. One or both of the first and second capacitive elements may have a variable capacitance.
Abstract:
A differential oscillator based on a first Colpitts oscillator and a mirror image Colpitts oscillator that is coupled to the first Colpitts oscillator. This differential oscillator outputs differential voltage signals that are about 180 degrees out of phase. The differential oscillator may also be adapted to form a voltage controlled oscillator (VCO) such that the differential voltage signals output by the VCO can be varied. A transceiver for telecommunication devices such as cellular phones may use differential oscillators to generate a carrier signal on which a voice or data signal is modulated and the same differential oscillators to assist isolation of the voice or data signal from received signals.