Abstract:
Spherical microphone arrays capture a three-dimensional sound field (P(Ωc, t)) for generating an Ambisonics representation (Anm(t)), where the pressure distribution on the surface of the sphere is sampled by the capsules of the array. The impact of the microphones on the captured sound field is removed using the inverse microphone transfer function. The equalization of the transfer function of the microphone array is a big problem because the reciprocal of the transfer function causes high gains for small values in the transfer function and these small values are affected by transducer noise. The invention minimizes that noise by using a Wiener filter processing in the frequency domain, which processing is automatically controlled per wave number by the signal-to-noise ratio of the microphone array.
Abstract:
Higher Order Ambisonics represents three-dimensional sound independent of a specific loudspeaker set-up. However, transmission of an HOA representation results in a very high bit rate. Therefore compression with a fixed number of channels is used, in which directional and ambient signal components are processed differently. For coding, portions of the original HOA representation are predicted from the directional signal components. This prediction provides side information which is required for a corresponding decoding. By using some additional specific purpose bits, a known side information coding processing is improved in that the required number of bits for coding that side information is reduced on average.
Abstract:
Encoding of Higher Order Ambisonics (HOA) signals commonly results in high data rates. A method for low bit-rate encoding frames of an input HOA signal having coefficient sequences comprises computing (s110) a truncated HOA representation (CT(k)), determining (s111) active coefficient sequences (IC,ACTT(k)), estimating (s16) candidate directions (MDIR(k)), dividing (s15) the input HOA signal into a plurality of frequency subbands (f1, . . . , fF), estimating (s161) for each of the frequency subbands a subset of candidate directions (MDIR(k)) as active directions (MDIR(k,f1), . . . , MDIR(k,fF)) and for each active direction a trajectory, computing (s17) for each frequency subband directional subband signals from the coefficient sequences of the frequency subband according to the active directions, calculating (s18) for each frequency subband a prediction matrix (A(k,f1), . . . , A(k,fF)) that can be used for predicting the directional subband signals from the coefficient sequences of the frequency subband using the respective active coefficient sequences (K)), and encoding (s19) the candidate directions, active directions, prediction matrices and truncated HOA representation.
Abstract:
Encoding of Higher Order Ambisonics (HOA) signals commonly results in high data rates. A method for low bit-rate encoding frames of an input HOA signal having coefficient sequences comprises computing (s110) a truncated HOA representation (CT(k)), determining (s111) active coefficient sequences (Ic,Act(k)), estimating (s16) candidate directions (MDIR(k)), dividing (s15) the input HOA signal into a plurality of frequency subbands (f1, . . . , fF), estimating (s161) for each of the frequency subbands a subset of candidate directions (MDIR(k)) as active directions (MDIR(k,f1), . . . , MDIR(k,fF)) and for each active direction a trajectory, computing (s17) for each frequency subband directional subband signals from the coefficient sequences of the frequency subband according to the active directions, calculating (s18) for each frequency subband a prediction matrix (A(k,f1), . . . , A(k,fF)) that can be used for predicting the directional subband signals from the coefficient sequences of the frequency subband using the respective active coefficient sequences (Ic,ACT(k)), and encoding (s19) the candidate directions, active directions, prediction matrices and truncated HOA representation.
Abstract:
Higher Order Ambisonics represents three-dimensional sound independent of a specific loudspeaker set-up. However, transmission of an HOA representation results in a very high bit rate. Therefore compression with a fixed number of channels is used, in which directional and ambient signal components are processed differently. The ambient HOA component is represented by a minimum number of HOA coefficient sequences. The remaining channels contain either directional signals or additional coefficient sequences of the ambient HOA component, depending on what will result in optimum perceptual quality. This processing can change on a frame-by-frame basis.
Abstract:
The invention improves HOA sound field representation compression. The HOA representation is analyzed for the presence of dominant sound sources and their directions are estimated. Then the HOA representation is decomposed into a number of dominant directional signals and a residual component. This residual component is transformed into the discrete spatial domain in order to obtain general plane wave functions at uniform sampling directions, which are predicted from the dominant directional signals. Finally, the prediction error is transformed back to the HOA domain and represents the residual ambient HOA component for which an order reduction is performed, followed by perceptual encoding of the dominant directional signals and the residual component.
Abstract:
A method and apparatus for decompressing a Higher Order Ambisonics (HOA) signal representation is disclosed. The apparatus includes an input interface that receives an encoded directional signal and an encoded ambient signal and an audio decoder that perceptually decodes the encoded directional signal and encoded ambient signal to produce a decoded directional signal and a decoded ambient signal, respectively. The apparatus further includes an extractor for obtaining side information related to the directional signal and an inverse transformer for converting the decoded ambient signal from a spatial domain to an HOA domain representation of the ambient signal. The apparatus also includes a synthesizer for recomposing a Higher Order Ambisonics (HOA) signal from the HOA domain representation of the ambient signal and the decoded directional signal. The side information includes a direction of the directional signal selected from a set of uniformly spaced directions.
Abstract:
A method for encoding multi-channel HOA audio signals for noise reduction comprises steps of decorrelating the channels using an inverse adaptive DSHT, the inverse adaptive DSHT comprising a rotation operation and an inverse DSHT, with the rotation operation rotating the spatial sampling grid of the iDSHT, perceptually encoding each of the decorrelated channels, encoding rotation information, the rotation information comprising parameters defining said rotation operation, and transmitting or storing the perceptually encoded audio channels and the encoded rotation information.
Abstract:
There are two representations for Higher Order Ambisonics denoted HOA: spatial domain and coefficient domain. The invention generates from a coefficient domain representation a mixed spatial/coefficient domain representation, wherein the number of said HOA signals can be variable. An aspect of the invention further relates to methods and apparatus decoding multiplexed and perceptually encoded HOA signals, including transforming a vector of PCM encoded spatial domain signals of the HOA representation to a corresponding vector of coefficient domain signals by multiplying the vector of PCM encoded spatial domain signals with a transform matrix and de-normalizing the vector of PCM encoded and normalized coefficient domain signals, wherein said de-normalizing comprises. The methods may include combining a vector of coefficient domain signals and the vector of de-normalized coefficient domain signals to determine a combined vector of HOA coefficient domain signals that can have a variable number of HOA coefficients.
Abstract:
Higher Order Ambisonics represents three-dimensional sound independent of a specific loudspeaker set-up. However, transmission of an HOA representation results in a very high bit rate. Therefore compression with a fixed number of channels is used, in which directional and ambient signal components are processed differently. For coding, portions of the original HOA representation are predicted from the directional signal components. This prediction provides side information which is required for a corresponding decoding. By using some additional specific purpose bits, a known side information coding processing is improved in that the required number of bits for coding that side information is reduced on average.