Abstract:
Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, an artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a first component of the artificial joint prosthesis including a contact surface of the artificial joint prosthesis, the first component fabricated from at least one polymer and a plurality of magnetic particles; and a second component of the artificial joint prosthesis including at least one magnet configured to create a magnetic field within the artificial joint, the at least one magnet positioned to form a magnetic field directed to influence a location of debris including the magnetic particles in the joint to a position distinct from the bone-prosthesis interface in vivo.
Abstract:
Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, an artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure positioned adjacent to the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo; a mechanism attached to the fluid deflection structure, the mechanism operable to move the fluid deflection structure to direct synovial fluid away from the bone-prosthesis interface in vivo; and at least one particle retaining structure positioned to contact the directed flow of synovial fluid and configured to retain non-physiological particles present within the synovial fluid.
Abstract:
Prosthetic artificial joints are described, including hip, knee and shoulder joints. In some embodiments, a artificial joint prosthesis includes: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis, the non-contact surface adjacent to the bone-facing surface of the artificial joint prosthesis; at least one fluid deflection structure positioned adjacent to the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo; and a mechanism attached to the fluid deflection structure, the mechanism operable to move the fluid deflection structure to direct synovial fluid away from the bone-prosthesis interface in vivo.
Abstract:
Systems and methods are described herein for guided injection, which include: one or more controllable light-emitting elements configured to emit non-destructive light and a computing device operably connected to the one or more controllable light-emitting elements configured to emit non-destructive light, the computing device including a processor operable to receive at least one digital representation of a body region of an individual, the body region of the individual including one or more physical registration landmarks, the at least one digital representation including one or more digitally registered injection sites and one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region; and control the one or more controllable light-emitting elements to illuminate a location of a surface of the body region of the individual corresponding in location to at least one of the one or more digitally registered injection sites.
Abstract:
Artificial joint prosthetic components including synovial fluid deflection structures are described. Embodiments of artificial joint prosthesis include those with: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis; and at least one fluid deflection structure positioned on the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo.
Abstract:
Appurtenances to cavity wound medical dressings are described. In some embodiments, an appurtenance to a cavity wound dressing includes: a substrate including at least one wound-facing surface, the wound-facing surface configured to be oriented facing a wound surface of a cavity wound; and a plurality of sensor units attached to the substrate, the plurality of sensor units oriented and positioned on the substrate relative to the wound surface of the cavity wound.